Магнезит — свойства минерала, фото и применение камня. Основные химические и физические свойства магнезита и брусита

Синонимы: магнезиальный шпат.

Магнезит назван по месту находки у города Магнезия - область в Фессалии (Греция). Минерал известен с глубокой древности.

Магнезит скрытокристаллический агрегат

Формула магнезита

Химический состав

MgO 47.6%, СO 2 52.4%. Из изоморфных примесей наиболее часто устанавливается Fe, иногда Mn, Са. Магний может частично замещаться железом, и магнезит, таким образом, постепенно переходит в сидерит. Крук выделил следующие промежуточные типы магнезита: брейнерит (breunnerite) 95 - 70% MgCO 3 , мезитит 70-50% MgCO 3 , пистомезитит 50-30% MgCO 3 , сидероплезит 30 - 5% MgCO 3 ; остальное во всех случаях приходится на FeCO 3 . Механическими примесями, особенно в метаколлоидных образованиях, являются: SiO 2 в виде опала или халцедона (до нескольких процентов), Аl 2 O 3 в виде глинистого вещества, Н 2 O, иногда доломит (с ним, очевидно, связано содержание СаО в магнезитовых массах).

Кристаллографическая характеристика

Сингония. Тригональная

Класс дитригонально-скаленоэдрический. L 3 3L 2 3PC.

Кристаллическая структура


Главные формы :

Кристаллическая структура аналогична структуре кальцита.

Форма нахождения в природе

Облик кристаллов обычно ромбоэдрический или призматический.

Полисинтетические двойники отсутствуют.

Агрегаты. Чаще распространен в виде крупнозернистых агрегатов. Для месторождения выветривания чрезвычайно характерны фарфоровидные метаколлоидные массы, нередко напоминающие по своей форме цветную капусту.

Физические свойства

Оптические

  • Цвет магнезита белый с желтоватым или сероватым оттенком, иногда снежно-белый.
  • Черта белая.
  • Блеск стеклянный, матовый.

Механические

  • Твердость 4-4.5 (у фарфоровидных разновидностей до 7).
  • Плотность 2.9-3.1.
  • Спайность совершенная по ромбоэдру.
  • Излом зернистый, для плотных метаколлоидных фарфоровидных разностей характерен раковистый излом.
  • Хрупок.

Химические свойства

Растворимость MgCO 3 в воде несколько выше, чем для кальцита. При обыкновенной температуре и атмосферном давлении в чистой воде она не превышает 80 мг/л, но в виде бикарбоната Mg 2 растворимость исключительно высока: при Р CO2 ,- равном 1 ат, и При 18° она достигает 25 800 мг/л, т. е. в 23 раза выше, чем растворимость при этих же условиях бикарбоната кальция. При Р CO2 равном 56 ат, она возрастает до 74900 мг/л. Характерно, что при нагревании она столь же резко падает: при температуре 100° и том же Р CO2 равном 1 ат, она меньше 100 мг/л.

Важно подчеркнуть также то обстоятельство, что из раствора бикарбоната магния при понижении Р CO2 или повышении t не удается получить осадок нормальной соли MgCO 3 , а всегда тригидрат- MgCO 3 3H 2 O, часто в смеси с основными водными карбонатами магния (вследствие явно выраженной склонности ионов Mg 2+ к образованию комплексов с Н 2 O). С течением времени эти водные соли способны превращаться в безводный нормальный карбонат магния (в условиях пониженной упругости водяного пара). Установлено также, что выпадение тригидрата карбоната магния в осадок резко возрастает с увеличением щелочности раствора (при рН>8).

В кислотах растворяется лишь при нагревании. Капля соляной кислоты на холоду не "вскипает". Лишь в тонкозернистых агрегатах, как это характерно и для других труднее растворимых карбонатов (доломита, сидерита и пр.), пузырьки СO 2 выделяются спустя некоторое время. В горячих кислотах растворяется.

Прочие свойства

Теплота образования: MgO+CO 2 = MgCO 3 +27 240 кал.

Диссоциация MgCO 3 при прокаливании в атмосфере воздуха наступает при температуре 525° (по кривым нагревания 600- 690°). При повышенных давлениях углекислоты Р CO2 = 1-200 ат, магнезит может быть устойчив до температуры 600-700°.

Искусственное получение минерала

Искусственно магнезит получается при нагревании осажденных из растворов водных карбонатов магния. Интересно отметить, что при пропускании струи СО 2 через нагретый раствор MgCO 3 выпадают в осадок кристаллики ромбической модификации (неизвестные в природе).

Диагностические признаки магнезита

Сопутствующие минералы. Доломит, кальцит, кварц , опал , тальк , оливин , пирит , халькопирит , лимонит , галенит , сфалерит .

Узнается с трудом. Белая массивная разновидность похожа на кремень, но обладает более низкой твердостью. В кристаллических разностях, как и все карбонаты кальцитового ряда, отличим от других минералов по ромбоэдрической спайности. Внутри ряда его труднее всего отличить от доломита, анкерита и других карбонатов; приходится прибегать к оптическим и химическим исследованиям. От доломита и кальцита отличается характером реакции с соляной кислотой.


Происхождение и нахождение

Магнезит по сравнении с кальцитом в природе распространен значительно реже, но встречается иногда в больших сплошных массах, представляющих промышленный интерес. Часть таких скоплений образуется гидротермальным путем. Сюда прежде всего следует отнести весьма крупные месторождения кристаллических зернистых масс магнезита, пространственно связанных с доломитами и доломитизированными известняками. Как показывает геологическое изучение, эти залежи образуются метасоматическим путем (среди залежей иногда удавалось установить реликты известняковой фауны). Предполагают, что магнезия могла выщелачиваться и
отлагаться в виде магнезита горячими щелочными растворами из доломитизированных толщ осадочного происхождения. В парагенезисе с магнезитом изредка встречаются типичные гидротермальные минералы: кальцит, арагонит, доломит, барит, тальк, хлорит, кварц, пирит, халькопирит, сфалерит, блеклые руды и др.

Другой тип гидротермальных месторождений, также имеющий иногда практическое значение, связан с воздействием богатых углекислотой гидротерм на массивы ультраосновных магнезиальных изверженных пород: серпентинитов, перидотитов и др. Залежи тонкокристаллического магнезита в виде линз, жил, гнезд и густой сети прожилков обычно приурочены к трещинам и зонам сбросов. В виде включений наблюдаются кальцит, доломит, анкерит, тальк, халцедон, кварц, магнетит, гематит
и др. Образование магнезита могло происходить по следующей схеме:

Mg 6 8 + 6CO 2 → MgCO 3 + 4SiO 2 + H 2 O

Образующийся при этом свободный кремнезем в основном, очевидно, уносится щелочными водами. Опал, халцедон и кварц в самой магнезиальной массе обычно наблюдаются в сравнительно ничтожных количествах.

Скопления скрытокристаллического («аморфного») магнезита возникают также при процессах выветривания массивов ультраосновных пород, особенно в тех случаях, когда при интенсивном выветривании образуется мощная кора продуктов разрушения. В процессе окисления и гидролиза магнезиальные силикаты под влиянием поверхностных вод и углекислоты воздуха претерпевают полное разрушение. Возникающие при этом труднорастворимые гидроокислы железа скопляются у поверхности. Магнезия в виде бикарбоната, а также освободившийся кремнезем в виде золей опускаются в нижние горизонты коры выветривания. При этом могут возникнуть нерезко очерченные, постепенно переходящие друг в друга зоны новообразований. , часто обогащенный опалом и доломитом, в виде прожилков и скоплений натечных форм отлагается в сильно выщелоченных трещиноватых пористых серпентинитах в зоне застоя грунтовых вод.

Наконец, находки магнезита с гидромагнезитом большей частью минералогического значения наблюдаются среди осадочных соленосных отложений. Образование карбонатов магния связывают с реакцией обменного разложения сульфата магния с Na 2 CO 3 . Магнезит встречается также в гипсоносных осадочных толщах.


Магнезит. Зернистый агрегат

Месторождения

Известное Саткинское месторождение кристаллического магнезита, гидротермального происхождения, находится на западном склоне Южного Урала (в 50 км к юго-западу от г. Златоуста). Крупные магнезитовые залежи образовались метасомэтическим путем среди доломитовой осадочной толщи докембрийского возраста. Аналогичные месторождения известны на Дальнем Востоке, в Южной Манчжурии, Корее, Австрии (Вейтш, в Альпах, южнее г. Вены), в Чехии, в Канаде (Квебекское) и в других местах.

Реферат

Магнезит



1.Общие сведения

Применение в народном хозяйстве

Запасы и добыча

Типы промышленных месторождений

Геохимия и минералогия

Список литературы


1. Общие сведения


Минерал магнезит-карбонат магния - MgCO3 (MgO-47%, CO2-53%) - минерал, карбонат магния, MgCO3. Назван по месту находки в исторической области Магнасия в Греции. Магнезит представляет углекислую соль магния MgCO3. Теоретически он состоит из 47,8% MgO и 52,2% СO2, являясь крайним членом двух изоморфных рядов: с сидеритом (FeCO3) и кальцитом CaCO3). Промежуточные члены этих рядов - брейнерит (Mg, Fe) CO3 и доломит CaMg(CO3)3 подобно магнезиту также используются в качестве огнеупорного сырья. Практически в нем всегда содержатся различные количества оксидов железа, кальция, марганца, алюминия и кремния. Выделяется две природных разновидности магнезита: кристаллическая и криптокристаллическая (аморфная). Иногда в ассоциации с магнезитом обнаруживается также гидромагнезит Mg[(OH)2(CO3)4].4H2O, утилизируемые совместно.

Кристаллический магнезит образует зернистые агрегаты, сложенные вытянутыми кристаллами от долей мм до 1 см. Белый или желтоватый, а от примесей углистого вещества - светло- или темно-серый до черного. Текстуры агрегата: полосчатые, радиально-лучистые, массивные. Твердость 3,5-4, плотность 3,02 г./см3.

Криптокристаллический (аморфный) магнезит обычно имеет белый цвет и фарфоровидный облик. Он образует натечные гроздьевидные формы, обладает раковистым изломом. В зависимости от примесей может принимать кремовый, желтоватый, буроватый или серый оттенок. В отличие от кристаллического обладает несколько более высокой твердостью (3,5-5) и меньшей плотностью (2,9-3 г./cм3).


2. Применение в народном хозяйстве


Основной потребитель магнезита (более 95%) огнеупорная

промышленность, где после обжига или плавления магнезит используется для изготовления магнезитовых, хромомагнезитовых огнеупорных изделий, которые применяются для кладки мартеновских, электроплавильных, и др. печей, магнезитовый порошок употребляется для наварки подин сталеплавильных печей. Также магнезит употребляется: в электротехнической промышленности магнезитовый порошок (в виде периклаза) - радиодетали, ТЭН и др.; в строительной промышленности (магнезиальный цемент - «цемент Сореля»); в абразивных изделиях; металлический магний; жженую магнезию для резиновых изделий; серно-кислый магний для химпромышленности и др. При обжиге до 1000° магнезит теряет углекислоту и превращается в окись магния, при 1500-1650° превращается в кристаллический магнезит - периклаз и при 2800° в плавленый периклаз.


Рис. 1 Основные виды продукции, получаемые из магнезиального сырья


При нагревании (обжиге) до 700-1000њС магнезит теряет большую часть углекислоты и превращается в порошкообразную массу (каустический или малообожженный магнезит), характеризующуюся щелочными свойствами. Содержание СО2 в нем не превышает 3-8%, Порошок каустического магнезита вместе с концентрированным раствором хлористого магния MgCl2 или сернокислого магния MgSO4 образует магнезиальный цемент (цемент Сореля), обладающий высокими вяжущими и пластическими свойствами; он способен связывать различные органические материалы, находя применение в производстве экологически чистых строительных отделочных и термоизоляционных материалов, искусственных жерновов и абразивов, а также в виде растворов и бетона с органическими (опилки, древесные стружки) и минеральными (песок, гравий) наполнителями. Из каустического магнезита получают металлический магний и различные химические соединения.

При повышении температуры обжига свыше 1000њС каустические свойства пропадают и при температуре 1450-1750њС углекислота исчезает полностью - образуется так называемый намертво обожженный магнезит (металлургический магнезит, искусственный периклаз, зинтер-магнезит):

минерал магнезит химический

магнезитпериклазуглекислота


Образование искусственного периклаза за счет дегидратации брусита происходит при температуре около 450њС:


Mg(OH) 2 ?MgO +H2O

бруситпериклазвода


Металлургический магнезит плавится при температуре около 2800њС, инертен к воде и углекислоте. В зависимости от примесей в исходном сырье совместно с ним фиксируются примеси клиноэнстатита, форстерита и других минералов. Намертво обожженный магнезит получают главным образом из кристаллического. Он очень прочен при спекании порошка, используясь для наварки пода и стенок мартеновских печей, для изготовления огнеупорных кирпичей, используемых в сталелитейном, сернокислотном и портландцементном производствах.

Основные виды продукции, получаемые из магнезиального сырья, приведены на рис. 60. В небольших количествах оксид магния используется для получения металлического магния в химической промышленности, для изготовления различных лечебных препаратов в фармацевтической промышленности (жженая магнезия), для различных целей в резиновой, бумажной, сахарной и керамической отраслях.

В странах с ограниченными ресурсами магнезитового сырья (Англия, Япония) налажено получение оксида магния из морской воды путем смешивания последней с обожженным доломитом или известняком:


CaO. MgO +MgCl2 + 2H2O ?2Mg(OH) 2? +CaCl2

обожженный морская вода гидроксид магния хлористый

доломит кальций


Образующийся в результате этой реакции обмена гидроксид магния выпадает в осадок и затем обжигается до оксида магния. Экономическая целесообразность данного способа подтверждается в частности тем, что, например, в США, несмотря на наличие значительных промышленных месторождений магнезита, большую часть оксида магния получают именно из морской воды, а также из подземных рассолов.

Общий объем мировой добычи природного магнезита составил в 1996 году 15,7 млн т, из которых на долю кристаллического приходится 80% и криптокристаллического (аморфного) - 20%. Ведущими добывающими странами являются Китай (5 млн т), Россия (3,6 млн т), КНДР (1,8 млн т) и Турция (1 млн т), производящими почти 3/4 мировой добычи.


3. Запасы и добыча


Всего в России выделяются три группы проявлений и месторождений: Саткинская, Семибратская и Катав-Ивановская группа, кроме того, тела магнезитов, не имеющих промышленной ценности, выявлены на Бакальских железорудных месторождениях (Петлинское, Шиханское и Рудничное).

Промышленные месторождения выявлены в Бурзянской серии Рифея. Магнезиты слагают протяженные пастообразные тела (от 100 м до 3.5 км) мощностью 3-30 метров, располагающиеся согласно с вмещающими доломитами. Магнезиты образовались осадочным путем (предполагается снос с континента высокомагнезиальных продуктов кор выветривания в докембрийские лагуны, образование ритмично слоистых карбонатно-терригенных толщ) и подверглись региональному и контактовому метаморфизму (перекристаллизация, доломитизация, окварцевание). Текстуры рудных тел - массивная, полосчатая, пятнистая, брекчиевая. Пятнисто-полосчатые обусловлены чередование пятен, полос с различным содержанием углеродисто-глинистого вещества, характерная гребенчато-полосчатая текстура обусловлена сростками магнезитовых зерен, ориентированных поперек полос.

Саткинская группа является первой сырьевой базой магнезита в России.

Предположительно (Тарань М.И.) Сатинский магнезит открыт в 1894 году, достоверных документов нет. (По рассказам, обратил внимание на огнеупорные свойства магнезита лаборант саткинсткого железоделательного завода - Сальников П.Г.). Управляющий заводом - Шуппе А.Ф. в 1900 году организовал разработку и добычу магнезита на 2 участках - Волчья гора и Карагайская гора. Здесь геологоразведочные работы провели в 1899-1900 годах Садовский Л.А. и Краснопольский А.А. В 1900 году было добыто 438 тонн магнезита. Впоследствии магнезитом в Сатке занимались Заварицкий, Наливкин, Гарань, Ушаков и др. геологи. Основные работы проведены Гаранем в 41-57 гг. На госбаланс месторождения были поставлены 41-59 годах разными геологами, участки Саткинского месторождения объединены в одно месторождение Зуевым Л.В в 1969 году.

Саткинское месторождение - представлено 7 участками - Карагайский, Мельнично - Паленихинский, Гологорский, Каргинский, Севе-ро-Карагайский, Волчьегорский и Степной.

Березовское месторождение известно с начала 20 века, детальная разведка проведена в 68 году. Рудные тела сосредоточены на трех участках - Северный, Южный и Западный.

Ельничное месторождение гос. резерв

Никольское месторождение отработано и списано с госбаланса

Катав-Ивановская группа. - Катав-Ивановское месторождение (отрабатывалось в1914 году) и несколько проявлений (Байгазинское-Челябинская область, Юшинское, Исмакаевское - Башкортостан). Промышленная значимость не установлена

Семибратская группа - не числятся на госбалансе Веселовское - обнаружено Гаранем в 1948 году. Мелкое.

Семибратское, очень крупное, выявлено в 1960 году Стариковым К.И. На месторождении выделено 4 участка - Центральный, Восточная залежь, залежь г. Долгой и Лиственный. Запасы разведаны, более 300 млн. т. Поскольку месторождение находится в водооохранной зоне р. Аи, оно снято с госбаланса.

Междуреченское мелкое. Южно-Семибратское - проявление.

В настоящее время на долю Челябинской области приходится 100% уральских и 20% российских запасов магнезита.

На государственном балансе учитывается три месторождения магнезита с запасами около 200 млн. т кристаллического магнезита. По степени промышленного освоения 2 месторожденияСаткинское и Березовское относятся к категории разрабатываемых. Эксплуатация этих месторождений осуществляется ОАО «Комбинат Магнезит»:

Саткинское месторождение, запасы учитываются по пяти участкам: Гологорскому (шахта «Магнезитовая»), Карагайскому, Каргинскому, Мельнично - Паленихинскому и Северо - Карагайскому. Остаток запасов около 190 млн. т. В настоящее время году добыча магнезита открытым способом ведется на 2-х участках: Карагайском и Мельнично - Паленихинском и подземным способом на шахте «Магнезитовая» (Гологорский и Карагайский участки).

Березовское месторождение разрабатываемое карьером. Остаток запасов около 9 млн. т. В последние годы отработки нет.

Запасы Ельничного месторождения магнезита учитываются в Государственном резерве, 2.5 млн. т.

ОАО «Комбинат Магнезит», является абсолютным монополистом по России, на него приходится 98-100% российской добычи магнезита и более 90% производства магнезитовых огнеупоров в России. В период с 1992-2001 г. годовой объем добычи составлял 2,0-4,5 млн. т, в 2001 г. - 2,2 млн. г.

Добытый магнезит перерабатывается на ДОФах, где производится дробление до фракции 40-0 мм и обогащение в тяжелых средах. После дробления и обогащения магнезит обжигается в шахтных и вращающихся печах. Магнезитовый спеченный порошок является товарной продукцией предприятия, а также используется для производства плавленого периклаза и огнеупорных изделий на композиционной основе. Продукция ОАО «Комбинат Магнезит» (магнезит сырой дробленый, магнезит для производства порошков, порошки магнезитовые, изделия магнезиальные) используется металлургическими и горно-металлургическими комбинатами России и Украины (Магнитогорский, Н-Тагильский, Челябинский, Орско-Халиловский, Новолипецкий, Норильский, Ждановский, Запорожсталь, Донецкий, Алчеевский).

Месторождение способПолезное ис-Добыча 2001 г.Товарная продукцияотработкикопаемоемлн. тмаркавыпуск млн. тСаткинское / открытыйМагнезит кри-1,9магнезит для произв. порошков и изделий МШ, МИ, МП, МППв2,0Саткинское /подземныйсталлический0,3концентрат0,5магнезит сырой0,001порошки магнезитовые.0,6изделия магнезитовые0,3

4. Типы промышленных месторождений


Важнейшими геолого-промышленными типами месторождений магнезита и брусита являются:

) стратиформные залежи кристаллического или оталькованного магнезита спорного генезиса в осадочных карбонатно-магнезиальных толщах протерозоя-раннего палеозоя (Саткинские месторождения на Южном Урале, Савинское в Восточном Саяне, Удерейское на Енисейском кряже, Ляонин в Китае, Заглеркогель в Австрии, Кочинца в Словакии, а также месторождения КНДР, Испании, Бразилии), включающие около 85% мировых запасов;

) штокверковые и штокверково-жильные образования криптокристаллического магнезита в ультрабазитах экзогенно-инфильтрационного и гидротермального генезиса (Халиловское месторождение на Южном Урале, месторождения Закавказья и Казахстана; месторождения Югославии, Греции, Турции, Италии, Индии), на долю которых приходятся практически остальные 15% мировых запасов;

) неправильные тела брусититов и бруситовых мраморов контактово-метаморфического генезиса среди толщ доломитов с линзами магнезитов близ контактов с интрузивами гранитоидов (Кульдурское и другие месторождения на Малом Хингане, Габбское в США, Покиондонг в КНДР, месторождения аподоломитовых брусит-кальцитовых мраморов в канадских провинциях Квебек и Онтарио).

Резко подчиненное значение имеют стратиформные линзовидно-пластовые залежи криптокристаллического магнезита и гидромагнезита с прослоями мергелей, глин, песчаников и конгломератов осадочного континентально-озерного генезиса, миоценового и плейстоценового возраста (месторождения Югославии, Кубы, Турции, штата Калифорния в США). Однако в последнее десятилетие за рубежом в терригенных толщах были выявлены крупные скопления криптокристаллического магнезита на Кубе (месторождение Реденсон) и в Австралии (месторождение Кунварари); в перспективе роль месторождений этого типа будет возрастать.


Рис. 2. Вверху: геологическая карта и разрез Б-Б\ Саткинского рудного поля (по материалам Бакальской ГРП). 1 - алевролиты, песчаники, глинистые сланцы; 2 - кварцитовидные песчаники; 3 - кварц-хлорит-серицитовые сланцы; 4 - алевролиты, песчаники; 5 - аркозовые песчаники; 6 - кварц-хлорит-серицитовые сланцы (бакальская свита); 7 - известняки (верхнесаткинская подсвита); 8 - доломиты (карагайскнй горизонт); 9 - доломиты, мергели, глинистые сланцы (верхнесаткинская подсвита); 10 - доломиты нормальные, глинистые, песчанистые, глинистые сланцы (нижнесаткинская подсвита); 11 - доломиты глинистые, мергели, глинистые сланцы (нижнесаткинская подсвита); 12 - глинистые сланцы; 13 - доломиты, доломитовые известняки, карбонатно-глинистые сланцы; 14 - граниты-рапакиви; 15 - дайки габбро-диабазов; 16 - разрывные нарушения; 17 - магнезитовые залежи; 18 - линия геологического разреза. Месторождения магнезита: I - Саткинское, II - Никольское, III - Березовское (за восточной рамкой карты), IV-Ельничное. Участки Саткинского месторождения (цифры на карте): 1 - Каргинский, 2 - Северо-Карагайский, 3 - Карагайский, 4 - Гологорский, 5 - Мельничный, 6 - Паленихинский, 7 - Волчьегорский, 8 - Степной.


Внизу: геологический разрез Саткинского месторождения магнезита (Карагайский участок) (по Л.В. Анфимову, Б.Д. Бусыгину, Л.Е. Деминой). 1 - глинистые сланцы (верхнесаткинская подсвита); 2 - глинистые и песчанистые доломиты; 3 - доломиты слоистые (карагайский горизонт); 4 - доломиты брекчиевидные (карагайский горизонт); 5 - глинистые сланцы (карагайский горизонт); 6 - магнезиты; 7 - дайки габбро-диабазов; 8 - делювиальные глины с щебнем; 9 - стратиграфические (а) и литологические (б) контакты; 10 - разломы; 11 - скважины; 12 - контуры карьера.

Саткинская группа месторождений кристаллического магнезита.

Саткинские месторождения магнезита (Саткинское, Березовское, Никольское, Ельничное) находятся близ г. Сатка Челябинской области на Южном Урале. Открытые в 1894 году, они начали эксплуатироваться в 1900 году; в настоящее время образуют одну из основных сырьевых баз огнеупорной промышленности страны. Добыча на этих месторождениях осуществляется открытым способом комбинатом <Магнезит> и составляет 95% от общероссийской. Намечается строительство новых карьеров и ввода новых мощностей для подземной добычи, а также переход к глубокому (флотационному и химическому) обогащению магнезита.

Геологически рассматриваемые месторождения находятся в западной части Башкирского мегаантиклинория, сложенного верхнепротерозойскими образованиями. Большинство промышленных залежей магнезита образуют линейно-вытянутую в восток-северо-восточном направлении зону, приуроченную к северо-западному пологому крылу Саткинской синклинали, сложенной карбонатными и карбонатно-глинистыми породами одноименной свиты нижнерифейского возраста (рис. 61).

Вмещающими стратиформные магнезитовые залежи являются породы карагайского горизонта верхнесаткинской подсвиты. В разрезе этого горизонта суммарной мощностью 750 м резко преобладают слоистые, массивные и брекчиевидные доломиты и глинистые доломиты, образующие слои и пачки мощностью в десятки метров. В резко подчиненном количестве встречаются мергели, доломито-глинистые и глинистые сланцы, слагающие слои мощностью до нескольких метров.

Магнезитовая минерализация в пределах карагайского горизонта прослеживается на трех стратиграфических уровнях, нижний из которых, включающий пластовые и неправильной формы залежи, является промышленным, а два верхних трассируются небольшими линзами, гнездами, прожилками и вкрапленностью магнезита. Многочисленные промышленные (преимущественно пластовые) залежи широко варьируют своими размерами: их длина по простиранию колеблется от 45 до 170 м, по падению - от 40 до 950 м, средние мощности от 13 до 30 м. Падение рудных тел юго-восточное под углами от 5 до 80њ (преобладают углы 20-40њ). Иногда пластовые рудные тела кулисообразно перекрываются, разделяясь друг от друга маломощными прослоями доломитов; в этих случаях в поперечных разрезах создается впечатление единых мощных (до 75 м) пластовых залежей (центральная часть Карагайского участка Саткинского месторождения). Промышленные рудные тела сложены на 94-98% кристаллическим магнезитом и характеризуются резкими контактами, согласными со слоистостью. Маломощные (до 10 м) тела с глубиной выклиниваются постепенно, более мощные имеют тупые окончания или расщепляются. Внутреннее строение магнезитовых залежей осложнено наличием гнезд и прожилков доломита.

Рудные тела рассечены разломами северо-западного и чаще северо-восточного направлений с амплитудами смещения по ним в десятки метров. Вдоль этих разломов, сопряженных с ними зон рассланцевания, а также вдоль контактов локализованных в них секущих даек диабазов и габбро-диабазов широко проявлены поверхностный и глубинный карст, осложняющий морфологию залежей и снижающий качество магнезита. Это - всевозможные воронки, карманы, щели, полости сложной формы, достигающие по удлинению 100 м и более.

Секущие магнезитовые залежи верхнепротерозойские дайки имеют северо-восточное простирание и крутые (от 50 до 90њ) падения на северо-восток и юго-восток. Они могут прослеживаться на несколько км по простиранию, имея мощность от 0,5 до 10 (редко до 20) метров. Вмещающие доломиты в зоне экзоконтакта этих даек превращены в бруситовые мраморы и бруситовые породы, сложенные кальцитом, доломитом и бруситом с прожилками ашарита и зернами магнетита; иногда доломиты подвержены простой перекристаллизации в мрамор; известняки - слабо перекристаллизованы, а глинистые породы - ороговикованы. Магнезит в приконтактовых частях с этими дайками иногда обнаруживает маломощные зоны доломитизации и серпентинизации.

Наибольшим распространением в залежах пользуется средне- и крупнозернистый магнезит с размерами зерен 3-10 мм. Мелкозернистая разновидность минерала встречается в виде маломощных прослоев и гнезд, гигантозернистая - на контактах с породами висячего бока, либо также в виде единичных гнезд. Магнезит характеризуется высокой чистотой: спектральный анализ показывает почти полное отсутствие элементов-примесей; содержание MgO в минерале - близко к теоретическому, количество СаО не превышает 1-1,5%.

Помимо магнезита в составе руды в незначительном количестве встречаются доломит, кальцит, тальк, кварц и пирит. В тяжелой фракции магнезитов установлены единичные мелкие зерна граната и сфалерита. Качество сырого магнезита Саткинских месторождений определяется главным образом ограничением содержаний в нем оксида кальция и кремнезема (табл. 14).

Образование крупных стратиформных залежей кристаллического магнезита, согласно залегающих в разрезе карбонатных осадочных толщ, является дискуссионным. Применительно к Саткинским месторождениям ранее были высказаны представления о гидротермально-метасоматическом (А.Н. Заварицкий и др.) и альтернативные - об осадочном раннедиагненетическом (М.И. Гарань) их образовании. В настоящее время первая гипотеза развивается в частности В.А. Тимесковым, согласно которому магнезитовые залежи образовались в ходе посторогенной тектоно-магматической активизации гидротермально-метасоматическим путем с участием гидротермальных растворов, связанных с гранитоидными интрузиями и привносивших с собой магний из глубинного источника. Химизм этого процесса может быть следующим:


2CaCO3 + MgCl2 ?CaMg(CO3) 2 + CaCl2;CaMg(CO3) 2 + Mg+2 ?2MgCO3 + Ca+2.


Главным аргументом в пользу этих представлений является наличие секущих взаимоотношений магнезита и вышележащих доломитов, наблюдаемых в карьерах.

Месторождения криптокристаллического магнезита Вавдос, Греция

Месторождения Вавдос на полуострове Калкидики образуют одно из трех наиболее крупных рудных полей криптокристаллического магнезита в Греции, связанных с офиолитовыми комплексами. Их разработка проводилась еще в начале минувшего столетия. В конце ХХ века на долю этого рудного поля приходилась 1/4 часть производства намертво обожженного и 1/6 часть каустического магнезита годовой продукции страны. Геологически магнезитовая (и хромитовая) минерализация Калкидики связана с позднемеловым прерывистым поясом базит-ультрабазитовых интрузивов, вытянутым в северо-западном направлении почти на 100 км и прорывающим осадочную толщу карбонатных, глинисто-сланцевых, граувакковых и вулканокластических пород, метаморфизованных в фации зеленых сланцев (зона Вардар).

Рудное поле Вавдос ограничено контурами одного из таких интрузивов размером на поверхности 5x10 км в центральной части этого пояса (рис. 62). Интрузив сложен дунитами, вебстеритами, оливиновыми пироксенитами, бурыми серпентинитами и габброидами. В подчиненном количестве присутствуют амфиболиты, переслаивающиеся с габброидами и пироксенитами, а также светло-коричневые доломит-кварцевые породы. Среди дунитов присутствуют многочисленные мелкие тектонические линзовидные включения плагиогранитов. Самые распространенные породы комплекса - дуниты, сложенные практически нацело зеленым оливином. Около 90% всей магнезитовой минерализации связаны с этими породами, либо с их измененными эквивалентами - бурыми серпентинитами, сложенными лизардитом (30-60% породы), измененным оливином, идиоморфными кристаллами хромита и многочисленными доломитовыми прожилками. В верхних частях участков интенсивной магнезитовой минерализации находятся также минерализованные светло-коричневые доломит-кварцевые породы, тонкозернистые, массивные и очень крепкие. Породы сложены мельчайшими зернами доломита (7%) и кварца (25%); в них присутствуют эвгедральные зерна хромита и отмечаются единичные псевдоморфозы доломита и кварца по оливину.


Рис. 3. Схематическая геологическая карта района Вавдос, Греция (по С.Г. Дабитзиасу). 1 - четвертичные отложения; 2 - неогеновые отложения; 3 - дуниты, бурые серпентиниты и подчиненные оливиновые клинопироксениты; 4 - вебстериты; 5 - габбро; 6 - переслаивание габбро, вебстеритов и амфиболитов; 7 - плагиограниты; 8 - доломит-кварцевые породы; 9 - участки интенсивной магнезитовой прожилковой минерализации; 10 - филлиты, хлоритовые сланцы, слюдистые сланцы; 11 - палеозойские гнейсы; 12 - зона надвига; 13 - карьеры


Халиловское месторождение магнезита

Месторождение находится на Южном Урале близ ж/д станции Халилово в 270 км к востоку от Оренбурга. Залежи магнезита приурочены к крупному серпентинизированному массиву ультрабазитов (гарцбургитов), вытянутому в северо-западном направлении. Серпентиниты рассечены мощными дайками диабазового состава.

В участках промышленной магнезитоносности наблюдается изменение серпентинитов с глубиной: близ поверхности (до глубин 5-6 м) они сильно раздроблены и брекчированы, переходя далее в прочную темно-зеленого цвета монолитную породу с прожилками хризотил-асбеста. Магнезит выполняет многочисленные неправильной формы жилы и прожилки мощностью в первые десятки см, образующие штокверковую зону до глубины 17,5 м. Иногда в составе этого штокверка встречаются уплощенные гнездообразные тела мощностью до 2 м. Среднее содержание магнезита в участках промышленной минерализации достигает 3% от общего объема горной массы.

Преобладает однородный плотный скрытокристаллический магнезит с раковистым изломом; иногда он обнаруживает мелкие включения серпентина. Контакт индивидуальных жил с вмещающими серпентинитами отчетливый, с неровной почкообразной поверхностью. Химический состав магнезита крайне невыдержан, причем содержание вредных примесей - кремнекислоты и оксида кальция может быть значительным. В последнем случае среди магнезитовой массы появляются опал и халцедон.

Считается, что Халиловское месторождение магнезита является классическим примером инфильтрационных образований, генетически связанных с химическим выветриванием серпентинитов под действием углекислых поверхностных вод, происходившим на Урале в доюрское время. Магнезия, как полагают, переходила в раствор и переносилась в зону грунтовых вод нижних горизонтов коры выветривания, где и отлагалась по трещинам в слабо разрушенных серпентинитах в виде скрытокристаллического магнезита:


H4Mg3Si2O9 + 2H2O + 3CO2 ? MgCO3+ 2SiO2 + 4H2O

серпентинмагнезитопал, халцедон


5. Геохимия и минералогия


По генетической модели М.Т. Крупенина и Р. Эллимиса с учетом новейших геохимических данных по распределению элементов-примесей, редких земель и изотопов кислорода в разновидностях кристаллического магнезита и вмещающих доломитах, метасоматические магнезитовые залежи Сатки сформировались вскоре после литификации карбонатных толщ при латеральном либо нисходящем прохождении сквозь них флюидных потоков обогащенных магнием грунтовых вод, образованных при выветривании зеленокаменных архейских поясов, окружавших рифейский бассейн осадконакопления.

Имеющиеся минералого-геохимические данные свидетельствуют о том, что доломит-кварцевые породы отражают конечную стадию изменения дунитов минералообразующими растворами, следовавшую за промежуточной стадией образования бурых серпентинитов.

Промышленные участки интенсивной магнезитовой минерализации в плане имеют неправильные изометричные либо несколько вытянутые контуры, иногда осложненные языковидными выступами. Наиболее крупные в поперечнике достигают 0,5-1 км; шесть из них: Рахи Грива, Лусовитис, Цурнара, Гилдаки, Фот Рахи и Силади вскрыты карьерами. Во всех карьерах массивный криптокристаллический магнезит выполняет многочисленные, различной величины и ориентировки жилы, мощность которых варьирует от нескольких см до 2 м. Контакты жил резкие, извилистые. Их протяженность может быть значительной. Все это множество магнезитовых жил образует густой незакономерный штокверк, хотя местами в нем намечается некоторая упорядоченность в ориентировке трещин. Магнезитовые жилы установлены на глубинах 70-80 м от поверхности, устойчиво продолжаясь на глубину без каких-либо признаков выклинивания. Мощность жил, их морфология и особенности состава варьируют в зависимости от вмещающих пород.


Выводы


Практическая значимость магнезита определяется широким использованием в промышленности огнеупоров (около 90% добываемого сырья), сельском хозяйстве и медицине получаемого из них оксида магния MgO (жженой магнезии). В настоящее время приблизительно 2/3 мирового производства оксида магния приходится на обжиг природного магнезита, а около 1/3 - на экстракцию из морской воды, подземных и поверхностных рассолов.

Магнезит - довольно популярный коллекционный минерал. Его плотные фарфоровидные агрегаты обрабатывают кабошоном и используют в качестве поделочного камня. Из гигантских кристаллов, поступающих только из Бразилии, для коллекций гранят камни весом до 100 карат. Пористый магнезиточень хорошо принимает окраску. Его вполне можно использовать в качестве имитации таких популярных самоцветов как бирюза, лазурит или красные кораллы. В этом отношении магнезит очень похож на говлит.


Список литературы


1.Кейльман Г.А., Болтыров В.Б. Основы геологии, Недра, 1985 г.

2.Бетехтин А.Г. Курс минералогии, Госгеолтехиздат, 1961 г.

Еремин Н.И. Неметллические полезные ископаемые, издательство МГУ, 2007 г.

Смирнов В.И. Курс рудных месторождений, Недра, 1986 г.

5.http://geo.web.ru/db/msg.html? mid=1172887&uri=glava_11.htm

6.Гелогия и разведка МПИ. Учебник для вузов под. Ред. В.В. Ершова - Недра, 1989 г.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Магнезит - минерал, безводный карбонат магния из группы кальцита. Известен с глубокой древности. Син.: магнезиальный шпат . Под п. тр. растрескивается, но плавится. Пламя не окрашивает. В кислотах растворяется лишь при нагревании. Капля НСl на холоду не вскипает. В горячих кислотах растворяется.

Кристаллическая структура та же, что у кальцита. Облик кристаллов обычно ромбоэдрический. Чаще распространен в виде крупно-зернистых агрегатов. Для месторождений выветривания характерны фарфоровидные метаколлоидные массы, нередко напоминающие по своей форме цветную капусту.

Происхождение

Магнезит по сравнению с кальцитом в природе распространен значительно реже, но встречается иногда в больших сплошных массах, представляющих промышленный интерес.

Часть таких скоплений образуется гидротермальным путем. Сюда прежде всего относятся довольно крупные месторождения кристаллически-зернистых масс магнезита, пространственно связанных с доломитами и доломитизированными известняками. Как показывает геологическое изучение, эти залежи образуются метасоматическим путем (среди залежей иногда удавалось установить реликты известняковой фауны). Предполагают, что магнезия могла выщелачиваться и отлагаться в виде магнезита горячими щелочными растворами доломитизированных толщ осадочного происхождения. В парагенезисе с магнезитом изредка встречаются типичные гидротермальные минералы.

Скопления скрытокристаллического ("аморфного") магнезита возникают также при процессах выветривания массивов ультраосновных пород, особенно в тех случаях, когда при интенсивном выветривании образуется мощная кора продуктов разрушения. В процессе окисления и гидролиза магнезиальные силикаты под влиянием поверхностных вод и углекислоты воздуха претерпевают полное разрушение. Возникающие при этом труднорастворимые гидроокислы железа скопляются у поверхности. Магний в виде бикарбоната, а также освободившийся кремнезём (в виде золей) опускаются в нижние горизонты коры выветривания. Магнезит, часто обогащенный опалом и доломитом, в виде прожилков и скоплений натёчных форм отлагается в сильно выщелоченных трещиноватых пористых серпентинитах в зоне застоя грунтовых вод.

Наконец, находки магнезита с гидромагнезитом (5MgO 4СO 2 5Н 2 O), большей частью минералогического значения, наблюдаются среди осадочных соленосных отложений. Образование карбонатов магния связывают с реакцией обменного разложения сульфата магния с Na 2 CO 3 .

Месторождения

Известное Саткинское месторождение кристаллического магнезита гидротермального происхождения находится на западном склоне Южного Урала (в 50 км. к юго-западу от г. Златоуста). Крупные магнезитовые залежи образовались здесь метасоматическим путём среди доломитовой осадочной толщи докембрийского возраста. Аналогичные месторождения известны на Дальнем Востоке, в Южной Маньчжурии, Корее, Чехословакии, Австрии (Вейтш, в Альпах, южнее г. Вены) и в других местах. Образуется совместно с тальком при метаморфизме (Шабровское месторождение, Ср. Урал) и выветривании ультраосновных горных пород (остров Эвбея в Эгейском море, Греция.

К месторождениям, образовавшимся в древней коре выветривания ультраосновных пород, относится Халиловское (Ю. Урал) и мния о-ва Эвбея в Эгейском море, Греция.

Осадочный магнезит отлагается в озёрах и лагунах, переслаиваясь с доломитом или в смеси с ангидритом. Наиболее крупные месторождения - в толщах лагунно-морских доломитов: пласты магнезита мощностью до 500 м и протяжённостью в десятки километров (Саткинское на Урале, м-ния Ляодунского полуострова, Kитай).

Практическое значение

Является рудой магния и его солей; используют для производства огнеупоров и вяжущих материалов, в химической промышленности; применяется для производства огнеупорного кирпича. При добыче магнезита лишь ограниченно используется механическое (ручное и с применением фотоэлементных и лазерных устройств), иногда также флотационное и электромагнитное обогащение. При температуре 750-1000°С из магнезита получают порошкообразную химически активную, т.н. каустическую, магнезию, из которой ещё не полностью удалена CO 2 . При 1500-2000°С получают огнеупорную магнезию, которая состоит главным образом из кристаллов периклаза (MgO) с температурой плавления около 2800°С. При повышенной температуре (до 3000°С), в электропечах получают особо чистый плавленный периклаз.

Наиболее массовый продукт переработки магнезита - огнеупорная магнезия - используется преимущественно в металлургии. Каустическая магнезия применяется в процессах химической переработки (слабощелочной реагент, катализатор и др.), как удобрение, для подкормки скота, в специальных цементах, в производстве целлюлозы, для получения вискозы, синтетических каучуков, красок (огнеупорный наполнитель), сахара и конфет, в виноделии, стеклоделии, керамике (флюсы), электронагревательных стержнях, водо- и газоочистке, при переработке урана, как антикоррозийная добавка к нефтяным топливам и др.

Кристаллическая структура магнезита

Магнезит (англ. MAGNESITE) - M g C O 3

КЛАССИФИКАЦИЯ

Strunz (8-ое издание) 5/B.02-30
Dana (8-ое издание) 14.1.1.2
Hey"s CIM Ref. 11.3.1

ФИЗИЧЕСКИЕ СВОЙСТВА

Цвет минерала Бесцветный, белый, серо-белый, желтоватый, коричневый, сиреневато-розовый; бесцветный во внутренних рефлексах и напросвет. Кристаллы нередко имеют неравномерное зонально-секториальное распределение окраски.
Цвет черты белый
Прозрачность прозрачный, полупрозрачный
Блеск стеклянный
Спайность совершенная по {1011}.
Твердость (шкала Мооса) 3.5 - 4.5
Излом раковистый
Прочность хрупкий
Плотность (измеренная) 2.98 - 3.02 гр/см3
Плотность (расчетная) 3.01 гр/см3
Радиоактивность (GRapi) 0

ОПТИЧЕСКИЕ СВОЙСТВА

Тип одноосный (-)
Показатели преломления nω = 1.700 nε = 1.509
Максимальное двулучепреломление δ = 0.191
Оптический рельеф умеренный
Дисперсия оптических осей очень сильная
Плеохроизм видимый
Люминесценция Может проявлять бледно-зеленую до бледно-синей флуоресценцию и фосфоресценцию

КРИСТАЛЛОГРАФИЧЕСКИЕ СВОЙСТВА

Точечная группа 3m (3 2/m) - Дитригонально-скаленоэдрический
Пространственная группа R3c (R3 2/c)
Сингония Тригональная
Параметры ячейки a = 4.6632Å, c = 15.015Å
Отношение a:c = 1: 3.22
Число формульных единиц (Z) 6
Объем элементарной ячейки V 282.76 ų (рассчитано по параметрам элементарной ячейки)
Двойникование Иногда может наблюдаться

Перевод на другие языки

Ссылки

Список литературы

  • Анфимов Л.В., Бусыгин Б.Д. Южноуральская магнезитовая провинция. Свердловск: ИГГ УНЦ АН СССР, 1982. – 70 с.
  • Анфимов Л.В., Бусыгин Б.Д., Демина Л.Е. Саткинское месторождение на Южном Урале. М.: Наука, 1983. – 86 с.
  • Витовская И.В. и др. Никелистый магнезит месторождения Сарыку-Болды (Центр. Казахстан) – первая находка в СССР. –Докл. АН СССР, 1991, 318, №3, 708-711.
  • Mitchell and Lampadius (1800): 3: 241 (as Kohlensaurer Talkerde).
  • Werner: Ludwig, C.F. (1803-1804) Handbuch der Mineralogie nach A.G. Werner. 2 volumes, Leipzig: 2: 154 (as Reine Talkerde, Talcum carbonatum).
  • Klaproth, M.H. (1810): Untersuchung des Magnesits aus Steiermark, Beiträge zur chemischen Kenntniss der Mineralkörper, Fünfter Band, Rottmann Berlin, 97-104
  • Koksharov, N. von (1875) Materialien zur Mineralogie Russlands. 11 volumes with atlas: vol. 7: 181.
  • Weiss (1885) Jb. Preuss. Geol. Landesanst.: 113.
  • Hintze, Carl (1889) Handbuch der Mineralogie. Berlin and Leipzig. 6 volumes: 1 : 3113.
  • Johnsen (1902) Neues Jahrbuch für Mineralogie, Geologie und бледноontologie, Heidelberg, Stuttgart: II: 133, 142.
  • Johnsen (1903) Centralblatt für Mineralogie, Geologie und бледноontologie, StuttgartP: 13.
  • Ratz analysis in: Redlich and Cornu (1908) Zeitschrift für praktische Geologie, Berlin, hale a.S.: 16: 145.
  • Bucking (1911) Kali: 5: 221.
  • Doelter, C. (1911-1931) Handbuch der Mineral-chemie (in 4 volumes divided into parts): 1: 220.
  • Ford (1917) Trans. Conn. Ac. Arts Sc.: 22: 211.
  • Gaubert (1917) Comptes rendu de l’Académie des sciences de Paris: 164: 46.
  • Goldschmidt, V. (1918) Atlas der Krystallformen. 9 volumes, atlas, and text, vol. 5: 175.
  • Honess (1918) American Mineralogist: 45: 210.
  • Gaubert (1919) Bulletin de la Société française de Minéralogie: 42: 88.
  • Niggli (1921) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 56: 230.
  • Dobbel (1923) American Mineralogist: 8: 223.
  • Rogers (1923) American Mineralogist: 8: 138.
  • Pardillo (1924) Treballs mus. cienc. nat. Barcelona: 9: 5.
  • Bradley (1925) California Bureau of Mines Bulletin 79.
  • Niinomy (1925) Economic Geology: 20: 25.
  • Barth (1927) Norsk Geologisk Tidsskrift, Oslo: 9: 271.
  • Lonsdale (1930) American Mineralogist: 15: 238.
  • Pavlovitch (1931) Bulletin de la Société française de Minéralogie: 54: 95.
  • Du Rietz (1935) Geologiska Föeningens I Stockholm. Förhandlinger, Stockholm: 57: 133.
  • Koch and Zombory (1935) Földtani Közlöny, Budapest (Magyarhone Földtani Torsulat): 64: 160.
  • Schoklitsch (1935) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 90: 433.
  • Petrascheck (1936) Forschritte der Mineralogie, Kristallographie und Petrographie, Jena: 20: 77.
  • Fenoglio and Sanero (1941) Periodico de Mineralogia-Roma: 12: 83.
  • Fornaseri (1941) Rend. Soc. min. ital.: 1: 60.
  • Lacroix (1941) Comptes rendu de l’Académie des sciences de Paris: 213: 261.
  • Wayland (1942) American Mineralogist: 27: 614.
  • Faust and Callaghan (1948) Bulletin of the Geological Society of America: 59: 11.
  • Murdoch and Webb (1948) California Division of Mines Bulletin 136: 196.
  • Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: Halides, Nitrates, Borates, Carbonates, Sulfates, Phosphates, Arsenates, Tungstates, Molybdates, Etc. John Wiley and Sons, Inc., New York, 7th edition, revised and enlarged: 162-166.
  • Goldsmith, J.R., D.L. Graf, J. Witters & D.A. Northrop (1962), Studies in the system CaCO3 MgCO3 FeCO3: (1) Phase relations; (2) A method for major element spectrochemical analyses; and (3) Composition of some ferroan dolomites: Journal of Geology: 70: 659-688.
  • Irving, A.J. and Wyllie, P.J. (1975) Subsolidus and melting relationships for calcite, magnesite and the join CaCO3 - MgCO3 to 36 kbar. Geochimica et Cosmochmica Acta: 39: 35-53.
  • Zeitschrift für Kristallographie (1981): 156: 233-243.
  • Reviews in Mineralogy, Mineralogical Society of America: 11.
  • Katsura, T., Tsuchida, Y., Ito, E., Yagi, T., Utsumi, W., and Akimoto, S. (1991) Stability of magnesite under lower mantle conditions. Proceedings of the Japan Academy: 67: 57-60.
  • Gillet, P. (1993) Stability of magnesite (MgCO3) at mantle pressure and temperature condition: A Raman spectroscopic study. American Mineralogist: 78: 1328-1331.
  • Schroll, E. (2002) Genesis of magnesites in the view of isotope geochemistry- IGCP 443 Magnesite and Talc. Bole de Ciencias, Special Issue 54, Newsletter No. 2, Curitiba, Brazil (2002): 59-68.
  • Anthony, J.W., Bideaux, R.A., Bladh, K.W., and Nichols, M.C. (2003) Handbook of Mineralogy, Volume V. Borates, Carbonates, Sulfates. Mineral Data Publishing, Tucson, AZ, 813pp.: 421.

Невероятно красивый и разнообразный камень магнезит привлекает не столько ювелиров, сколько промышленников. Руда, которой является этот камень, является основой для выплавки огнеупорных материалов, например, стали. Кроме того, этот камень обладает уникальными лечебными свойствами. А те, кто верят в магию, приписывают ему и магические способности.

Что такое магнезит?

Магнезит - это горная порода, распространенная практически по всему миру. Другое его название - карбонат магния или магнезиальный шпат. Химическая формула магнезита - MgCO 3 . Это достаточно популярный и распространенный минерал, который активно используется в тяжелой промышленности для изготовления огнеупорных сплавов.

Магнезитом также называют в состав которого входит MgO и примеси.

История камня

Впервые залежи магнезита были обнаружены в Древней Греции. Название камень получил именно в честь греческой области Магнасия, где его нашли. Магнезит - это удивительный камень, который сразу же поразил людей своей замысловатой структурой и разнообразностью вкраплений. Обнаружив свойство огнеупорности, древние греки сразу же стали использовать магнезит в промышленности, а кристаллические камни, которые красиво блестели на солнце, предприимчивые греки стали использовать для создания ювелирных украшений.

Происхождение минерала

Происхождение магнезита связывают с месторождениями гидротермального и поверхностного вида.

Породы, в которых обнаруживаются залежи магнезита, различаются по характеру своего образования. Они могут быть:

  • соленостные;
  • магматические;
  • ультраосновные;
  • метаморфические.

Кроме того, магнезит находится в скрытых массивах зернистого фарфора. Магнезит из доломитов добывают в промышленных масштабах.

Описание минерала

Внешне этот минерал очень похож на мрамор, но в отличии от него, магнезит - это довольно хрупкий камень из-за большого процента содержания в нем углекислого газа. Основу данной горной породы составляет магний, из-за чего он имеет преимущественно белый цвет. В зависимости от примесей, которые входят в состав магнезита, это может быть камень желтого, зеленого, серого, бурого или даже голубоватого оттенка. Это могут быть примеси кальция, железа и других химических веществ. В природе встречается магнезит с матовой поверхностью и камень, имеющий глянцевый стеклянный блеск.

Красивый блестящий магнезит гораздо менее распространен и используется преимущественно в ювелирном производстве.

Свойства камня

К физическим свойствам магнезита относятся следующие характеристики:

  • Камень имеет неметаллический матовый блеск, иногда со стеклянным отливом.
  • Структура минерала представлена кристаллами или зернами удлиненной формы - тригональными и ромбоэдрическими.
  • Данная горная порода обладает совершенной спайностью.
  • Минерал хрупкий, подобно фарфору.
  • Из-за низкой плотности вещества, его масса не большая.
  • Магнезит - это плохо растворимый минерал.
  • Камень обладает повышенной химической активностью.
  • В природе часто встречаются образцы горной породы неправильной формы.
  • При воздействии на порошок магнезита нагретой соляной кислоты, он начинает вскипать; реакция с другими разбавленными кислотами протекает без вскипания.

Месторождения магнезита

Первые месторождения магнезита были обнаружены еще в Древней Греции в области Магнасия. Сегодня добыча этого природного минерала осуществляется во многих странах мира.

Рекордсмен по добыче магнезита - это Россия. Также его извлекают из недр земли в Греции, Индии, Китае, Соединенных штатах Америки, КНДР, Бразилии, Мексике и Австралии.

Наиболее крупная в мире разработка месторождений по добыче магнезита находится в Иркутской области. Это Савинское месторождение, в котором добывают сибирский магнезит. Этот же вид камня добывают на Поволжье и Дальнем Востоке. Также в России есть залежи особого вида магнезита - каракульчатого.

Особый магнезит добывают и в Челябинской области на Саткинском месторождении. Этот минерал имеет особый декоративный вид. Это объясняется тем, что в его состав входят древесные компоненты.

Ярко-желтый магнезит добывают в Австрии. Он привлекает своей необычайной красотой, благодаря чему очень востребован в производстве ювелирных украшений.

Розовые образцы магнезита обнаружены во Франции. А Бразильские руды славятся своими особо крупными размерами.

На представленном ниже фото - магнезит с разными примесями, вследствие чего внешний вид камня очень разниться.

Применение минерала

Магнезит - достаточно распространенная горная порода. Разнообразие его видов объясняется большим количеством примесей, которые входят в состав камня. Оно же и обеспечивает широкий спектр отраслей, в которых применяется магнезит.

Основная промышленная отрасль, в которой активно используется магнезит, - это черная металлургия.

Металлургический магнезит является основным материалом при изготовлении магнезитовых изделий. На производстве его часто заменяют каустическим.

Этот вид руды благодаря своим свойствам является основой производства огнеупорных материалов.

Из магнезита синтезируют каучук и пластмассы, производят теплоизолирующие материалы и даже удобрения.

Магнезит применяют в целлюлозной и химической промышленности. Также этот минерал применяют в изготовлении строительных материалов. Принципиально новыми являются магнезитовые плиты. Это ровные листы, которые состоят из нескольких слоев. Благодаря высокотехнологичной обработке магнезитовой руды, ученым удалось получить магнезитовый цемент, который обладает достаточно высокой прочностью. А благодаря свойству огнеупорности, этот материал стал незаменимым в строительстве.

Декоративные экземпляры камня привлекают мастеров ювелирного дела.

Особого внимания заслуживают образцы ярко-желтого, розового и голубого оттенков. Наиболее популярными в ювелирной промышленности являются ожерелья, колье и серьги из блестящего магнезитового камня.

Руды данного минерала используются и в медицине.

Лечебное воздействие камня на нервную систему подтверждает не только народная медицина, но и официальная. Магнезит обладает успокаивающим действием, положительно влияя на нервную систему человека.

Доказано воздействие минерала и на зрение. Магнезит способен снять усталость с глаз, нормализовать внутриглазное давление. Его также используют для профилактики заболеваний глаз и постепенного улучшения зрения.

Однако, провидцы считают, что магнезит способен уберечь человека от беды и болезни, но не вылечить ее.

Магические свойства магнезита

Люди, которые верят в магию и силу камней, приписывают данному минералу и вовсе уникальные свойства.

Считается, что магнезит способен не только повысить иммунитет человека и уберечь его от эпидемий и инфекций, но и сохранить жизнь. Защитные свойства этого камня настолько велики, что их практически невозможно нивелировать.

Многие верят, что магнезит соединяет человека с природой. Именно поэтому, данный камень часто используется шаманами и провидцами. Верят, что владелец магнезита наделяется способностью понимать природу, разговаривать с животными, растениями, управлять силами природы.

Этому камню приписывают и помощь в воспитании детей.

Еще одно магическое свойство, которым люди наделили магнезит, - помощь в личной жизни. В старину люди верили, что этот минерал способен пробудить любовь и помочь молодым найти вторую половину. Считалось, что камень может уберечь супругов от развода и привнести в дом любовь. Теще на свадьбу также дарили изделие из этого камня. Это делалось для того, чтобы пробудить в ней материнскую любовь и заботу.

Считается, что шар из магнезита поможет в романтических делах. Но он же и разрушит все, что касается работы. Поэтому ни в коем случае нельзя хранить его на рабочем месте. На столе лучше поставить пирамидку или куб из этого материала (любую фигуру с ровными краями и углами).

Множество талисманов и амулетов изготавливают из магнезита.

Итак, магнезит - это уникальная горная порода, спектр применения которой очень широк.

Свойства

Магнезит

Химическая формула

Разновидности

Брейнерит, сидерит

Немалит, ферробрусит, манган-брусит

MgO – 47,6; CO 2 – 52,4

MgO – 69,0; Н 2 О – 31

Сингония

Тригональная

Тригональная

Внешний облик

Кристаллические агрегаты, реже землистые и аморфные формы

Кристаллические, плотные, листоватые, чешуйчатые реже волокнистые агрегаты

Белый, серый

Белый, серый, голубовато-зеленый

Стеклянный, тусклый

Перламутровый, стеклянный

Плотность, г/см 3

Твердость

Спайность

Совершенная

Весьма совершенная, слюдоподобная

Хрупкость

Расщепляется на пластинки, волокна

Температура диссоциации, о С

Уд. магнитная восприимчивость

–0,38 10 –3

Диамагнитен

Электропроводность, Ом.. м

Диэлектрическая проницаемость

Пироэлектрический диэлектрик

Растворимость

Разлагается при нагревании в кислотах

Разлагается в кислотах

Люминесцентность

В УФ – голубой, в катодном – малиновый

В УФ – голубоватый, темно – малиновый

В промышленности магнезит применяется в основном после предварительного обжига. При обжиге до 750–1000 °С магнезит теряет 92–94 % СО 2 и превращается в оксид магния, представляющий собой белую аморфную порошковатую массу (каустический магнезит). При более высокой температуре обжига (до 1500–1700 °С) удаляется практически весь диоксид углерода, оксид магния претерпевает перестройку молекулярной структуры и образуется плотный спекшийся инертный продукт, называемый «намертво» обожженным магнезитом или огнеупорной магнезией.

Обжиг магнезита для получения «намертво» обожженного магнезита (спеченных порошков) производится в шахтных и вращающихся печах. Отходы от обжига представлены каустическим магнезитом, образующимся из осаждающихся в пылевых камерах и мультициклонах пылеватых частиц, выносимых газовым потоком из зоны каустизации печей (750–1000 °С). Каустический магнезит кроме аморфного оксида магния, в качестве примесей содержит как необожженный, так и обожженный при температуре выше 1000 °С магнезит, а также золу топлива.

При температуре до 2800 °С в электродуговых печах оксид магния плавится и образуется плавленый периклаз, обладающий кристаллическим строением, высокой твердостью и огнеупорностью, используемый для производства особо ответственных огнеупорных изделий.

Из брусита при аналогичной переработке получают более дешевый периклаз высокой чистоты.

5.Применение магнезита обусловлено сочетанием благоприятных физико-химических свойств получаемой на его основе продукции: высокой огнеупорности, шлакоустойчивости, вяжущих свойств, теплоемкости, способности сохранять постоянство объема при длительном воздействии высоких температур, прочности, износоустойчивости. Применяются, в основном, следующие продукты, получаемые при разной технологии производства: каустический магнезит с содержанием MgO 75–90 %, намертво обожженный (спеченные порошки с содержанием MgO 86–92 %) и электроплавленный периклаз (с содержанием MgO 95–97 %). Из этих продуктов производится широкий ряд материалов и изделий для разных отраслей промышленности.

Основной потребитель магнезита (свыше 80 %) – огнеупорная промышленность. Получаемые из магнезита после обжига или плавления спеченные металлургические порошки или плавленый периклаз используются для изготовления магнезитовых, хромо-магнезитовых, магнезито-хромитовых огнеупорных изделий, которые применяются для кладки мартеновских, электроплавильных и других высокотемпературных печей и для футеровки вращающихся цементных печей. Металлургический магнезитовый порошок используется также для наварки подин сталеплавильных печей и для их ремонта.

Содержащиеся в природном магнезите примеси в процессе обжига при высоких температурах соединяются с оксидом магния и образуют новые минералы. Особенно вредной примесью является оксид кальция. При его избытке в огнеупорах присутствует свободная известь, способная гидратировать с резким увеличением объема, что вызывает появление трещин и иногда полное разрушение изделий. Примесь кремнезема при малом количестве кальция приводит к образованию малостойкого при воздействии шлаков и температур свыше 1750 °С форстерита. При значительном содержании кальция и отношении CaO:SiO 2 менее 1,87 (в молях) в изделиях образуются недостаточно огнеупорные и стойкие минералы – монтичеллит и мервинит (CaO·MgO·SiO 2 и 3CaO·MgO·2SiO 2).

Примесь глинозема в количестве до 5–8 % способствует образованию шпинелевой связки, которая повышает термическую стойкость магнезитовых изделий при резких температурных перепадах без заметного снижения огнеупорных свойств. Наличие оксида железа также приводит к образованию связки, но при этом наблюдается значительное снижение огнеупорности. Глинозем и оксиды железа обычно присутствуют в огнеупорных изделиях на магнезитовой основе в незначительных количествах, в связи с чем их содержания не учитываются нормирующими показателями государственных стандартов и технических условий.

Второй по значению потребитель магнезита – производство вяжущих материалов, где используется каустический магнезит (с содержанием MgO не менее 75 %, СаО не более 4,5 %, SiO 2 не более 3,5 %, F 2 O 3 + Al 2 O 3 не более 3,5 % и п.п.п. не более 18 %). Каустический магнезит с концентрированным раствором хлористого или сернокислого магния образует магнезиальный цемент («цемент Сореля»), обладающий высокими вяжущими свойствами. Этот цемент применяется для производства различных строительных (фибролит, ксилолит и др.), термоизоляционных, звукоизоляционных материалов, искусственных жерновов и абразивных кругов. Из каустического магнезита получают металлический магний, фосфаты магния, производят жженую магнезию для получения резиновых изделий, а также сернокислый магний для получения химических и фармацевтических препаратов.

В электротехнической промышленности магнезит (в виде периклаза) используется при получении керамики, применяющейся для изготовления радиодеталей, в качестве наполнителя в труб­чатых электронагревателях, для получения запрессовочной массы в бытовых электронагревательных приборах и для других электротехнических целей.

Магнезит применяется также в качестве флюсующей добавки в производстве некоторых видов фарфора и фаянса, санитарной керамики.

В целлюлозно-бумажной промышленности магнезит применяется как слабощелочной реагент при варке целлюлозы, для обработки бумаги под прессами и как наполнитель пленочных покрытий бумаги.

В пищевой промышленности используется гидрат оксида магния Mg(OH) 2 при рафинировании сахара.

Кроме того, магнезит нашел применение в производстве пластмасс, абсорбентов, красок, стеклоизделий, удобрений и в других отраслях.

6. Брусит является довольно уникальным магнезиальным сырьем, благодаря своему составу и технологическим особенностям переработки. При обжиге он менее энергоемкий, чем магнезит, и, кроме того, при его разложении выделяется вода, не загрязняющая природную среду. Брусит используется как в сыром, так и в обожженном виде. В сыром виде его применение весьма эффективно в качестве слабощелочного реагента в производстве целлюлозы в связи с многократной оборачиваемостью и отсутствием сброса щелоков в водоемы. При обжиге диссоциация брусита происходит при меньшей температуре, чем магнезита, а обожженный продукт обладает очень высокими электротехническими свойствами, благодаря ничтожному количеству примесей и представляет собой электротехнический периклаз высшего качества. При электроплавке получается очень плотный агрегат с повышенной теплопроводностью и электроизоляционными свойствами. Каустическая магнезия, получаемая из брусита, обладает высокой химической активностью и пригодна для получения широкого ассортимента магнезиальных химических продуктов, используемых во многих отраслях промышленности.

По сравнению с отечественным применением, за рубежом брусит используется очень широко, в том числе, в производстве вискозы, пластмасс, гидрометаллургии урана, рафинировании сахара, виноделии, покрытии сварочных электродов, получении керамических изделий, термоизоляционных материалов, стеклоизделий, конструкционных материалов электронного, ядерного и ракетного оборудования, инфракрасной и ультрафиолетовой оптики, добавки в топливо, водо- и газоочистка, наполнителя бумаги, поделочного материала и др.

Специальные технические требования к качеству брусита отсутствуют, качество получаемых из него продуктов оценивается по государственным стандартам и техническим условиям на продукты, получаемые из магнезита или на продукцию других отраслей.

7. Единые требования к качеству магнезита, используемого в промышленности, отсутствует. Требования различных отраслей к данному сырью и получаемой продукции в зависимости от области применения регламентируется соответствующими государственными стандартами и техническими условиями, утвержденными в установленном порядке.

Для производства огнеупоров применяется магнезит, содержащий не менее 42 % оксида магния, не более 2,5 % оксида кальция и не более 2 % кремнезема. Магнезит с содержанием оксида магния не менее 38 % может использоваться для получения магнезиальных вяжущих, и некоторых других назначений.

Для получения плавленого периклаза и огнеупоров на периклазовой основе могут использоваться высококачественные магнезиты (с содержанием MgO не менее 45,5 %) и бруситы с содержанием не менее 62 % оксида магния, не более 3 % оксида кальция и не более 3 % кремнезема. Для получения электротехнического периклаза и в целлюлозно-бумажном производстве в настоящее время используются магнезиты с содержанием MgO не менее 46 % и бруситы с содержанием оксида магния не менее 65 %, оксида кальция не более 1,0 %, кремнезема не более 8,0 % и оксида железа не более 0,2 %.

В настоящее время при совершенствовании металлургических процессов идет ужесточение требований к качеству сырья, и в частности, к содержанию примесей в товарной магнезии. Так, высококачественная огнеупорная магнезия должна содержать не менее 98 % MgO (после обжига), а для ответственных видов – более 99 %. При этом, не нормировавшиеся ранее примеси оксидов железа теперь играют важную роль в оценке сырья и товарных продуктов. Все типы товарной магнезии разграничиваются именно по содержанию MgО и Fe 2 O 3 , хотя требование о низком содержании Fe 2 O 3 имеет ограниченное значение, а при производстве некоторых огнеупорных изделий, наоборот, вводятся оксиды железа, как минерализаторы, поэтому существуют товарные сорта с высоким содержанием железа

8. По условиям образования месторождения магнезита относятся к двум формационным типам – терригенно-карбонатному и ультрамафитовому.

Терригенно-карбонатный формационный тип связан с континентальными и морскими отложениями и подразделяется на гипергенный осадочный континентальный генетический тип и гипергенный осадочный морской генетический тип.

Главным источником получения магнезита являются месторождения осадочного морского типа, связанные с терригенно-карбонатными (доломитовыми) комплексами, относящимися к широкому возрастному интервалу – от докембрия до мезозоя. Они располагаются в миогеосинклинальных зонах, обрамляющих кратоны.

Отечественные месторождения подразделяются на рифейские (Саткинские на Урале, Киргитейское, Верхотуровское, Тальское и другие в Красноярском крае, Сафонихинское на Дальном Востоке) и раннепротерозойские (Савинское и Онотское в Иркутской области). Месторождения представлены обычно очень крупными (протяженность до километра и более, мощность десятки и сотни метров) пласто- и линзообразными залежами качественных кристаллических магнезитов. Для раннепротерозойских месторождений характерна высокая степень метаморфизма и, как следствие, наличие в магнезитах силикатов (тальк, энстатит, форстерит, брусит и др.).

Континентальные осадочные магнезитовые месторождения приурочены к русловым или озерным фациям, развитым в депрессиях или в бессточных впадинах, находящихся или непосредственно на ультрамафитовых массивах, подверженных выветриванию, или в непосредственной близости от них. Подобные кайнозойские месторождения известны в Турции, Греции, Сербии. В Австралии открыто очень крупное месторождение подобного типа с запасами в сотни миллионов тонн.

Ультрамафитовый формационный тип подразделяется на гипогенный и гипергенный генетические типы. Первый представлен тальк-магнезитовым камнем, слагающим очень крупные месторождения. Однако, качество руд не высокое, из-за повышенного содержания вредных примесей, особенно железо, и поэтому не находят применение для производства ответственных изделий. Месторождения имеются на Урале (Сыростанское, Шабровское, Веселянское). Гипергенные месторождения связаны с корами выветривания ультраосновных пород и представлены жильными, штокообразными, гездообразными телами пелитоморфного магнезита довольно сложной конфигурации, непостоянством качественного состава, что предопределяет сложности их эксплуатации. В России известно Халиловское месторождение в Оренбургской области.

Месторождения мономинеральных бруситов в мире очень редки (единицы), одно из них – Кульдурское – находится в России на Дальнем Востоке. Месторождения являются гидротермально-метасоматическими, имеют прямую генетическую связь с магнезитами и образовались по иим в зонах контактового метаморфизма под воздействием гипабиссальных и субвулканических интрузий. Протяженность рудных тел в контактных ореолах измеряется сотнями метров и мощностью – десятки метров. Качество сырья, обычно, очень высокое.

В России разрабатываются месторождения кристаллических магнезитов осадочно-метаморфического типа (в Челябинской области и Красноярском крае), Халиловское месторождение пелитоморфных магнезитов в Оренбургской области (кора выветривания ультраосновных пород) – только для получения каустического магнезита и Кульдурское месторождение брусита в Еврейской АО (гидротермально-метасоматического типа).