Альтернативные источники энергии: виды и использование. Вспоминаем физику: работа, энергия и мощность

Энергия не возникает из ничего и никуда не исчезает, она может только переходить из одного вида в
другой ( сохранения энергии). связывает все явления природы в одно целое, является
общей характеристикой состояния физических тел и физических полей.
Вследствие существования закона сохранения энергии понятия «энергия» связывает все явления природы.
В физике понятие энергия обычно обозначается латинской буквой Е.
В системе СИ энергия измеряется в джоулях. Кроме этих основных единиц измерения на практике используется
очень много других удобных при конкретном использовании единиц. В атомной и ядерной физики а также в физике элементарных частиц понятие энергию измеряют электрон-вольтами, в химии калориями, в физике твердого тела градусами Кельвина, в оптике обращенными сантиметрами, в квантовой химии в самосогласованного.

Виды энергии.Энергетические системы

Согласно различных форм движения материи, различают несколько типов энергии: механическая, электромагнитная, химическая, ядерная,тепловая, гравитационная и др. Это деление достаточно условно. Так химическая энергия состоит из кинетической энергии движения электронов, их взаимодействия и взаимодействия с атомами.
Кроме того,по понятию различают энергию внутреннюю и энергию в поле внешних сил. Внутренняя энергия равна сумме кинетической энергии движения молекул и потенциальной энергии взаимодействия молекул между собой. Внутренняя энергия изолированной системы является постоянной.
В ризномантнитних физических процессах различные виды энергии могут превращаться друг в другой. Например, ядерная энергия в атомных электростанциях превращается сначала во внутреннюю тепловую энергию пара, вращающего турбины (механическая энергия), что в свою очередь индуцируют электрический ток в генераторах (электрическая энергия), который используется для освещения (энергия электромагнитного поля) и т.д.
Энергия системы однозначно зависит от параметров, характеризующих ее состояние. В случае непрерывного среды вводят понятие плотности .

История развития понятие энергии

Понятие энергии состояло в физике на протяжении многих веков. Его понимание все менялось. Впервые термин энергия в современном физическом смысле применил в 1808 году Томас Янг. К тому употреблялся термин «жизненная сила» (лат. vis viva), который еще в 17-м веке ввел в обращение Лейбниц, определив его как произведение массы на квадрат скорости.
В 1829 году Кориолиса впервые применил термин кинетическая энергия в современном смысле, а срок потенциальная энергия был введен Уильямом Рэнкин в 1853 году. К тому времени получены в исследованиях в различных областях науки данные начали складываться в общую картину. Благодаря опытам Джоуля, Майера, Гельмгольца прояснилось вопросы преобразования механической энергии в тепловую. В одной из первых работ «О сохранении силы» (1847) Гельмгольц, следуя идее единства природы, математически обосновал сохранения энергии
и положение о том, что живой организм является физико-химическим средой, в которой указанный закон точно выполняется. Гельмгольц сформулировал «принцип сохранения силы» и невозможность Perpetuum Mobile . Эти открытия позволили сформулировать первый закон термодинамики или понятие сохранения энергии. Понятие энергии стало центральным в понимании физических процессов. Вскоре естественным образом в понятие энергии вписалась термодинамика химических реакций и теория электрических и электромагнитных явлений.
С построением теории относительности к понятию энергии добалося новое понимание. Если раньше
потенциальная энергия определялась с точностью до произвольной постоянной, то теория Эйнштейна установила
связь энергии с массой.

Квантовая механика обогатила понятие энергии квантованием — для определенных физических систем энергия
может принимать лишь дискретные значения. Кроме того принцип неопределенности установил границы точности
измерения энергии и ее взаимосвязь с тем. Теорема Нетер продемонстрировала, что закон сохранения энергии
следует из принципа однородности времени, по которому физические процессы в одинаковых системах протекают
одинаково, даже если они начинаются в разные моменты времени.

Теория относительности.Энергетические системы

Энергия тела зависит от системы отсчета, т.е. неодинакова для разных наблюдателей. Если тело движется со
скоростью v относительно какого наблюдателя, то для другого наблюдателя, движущегося с той же скоростью, оно
покажется неподвижным. Соответственно, для первого кинетическая энергия тела будет равна
(исходя из законов классической механики) т v2/2′ где m — масса тела, а для другого — нулю.
Эта зависимость энергии от системы отсчета сохраняется также в теории относительности. Для преобразований, происходящих с энергией при переходе от одной инерциальной системы отсчета к другой используется сложная математическая конструкция — тензор энергии-импульса.
Энергия тела зависит от скорости уже не так как в ньютоновской физике, а иначе:
квантовая механика
Тогда, как в классической физике понятие энергия любой системы меняется непервно и может принимать произвольных значений, Квантовая теория утверждает, что энергия микрочастиц, привязанных силой взаимодействия с другими микрочастицами в ограниченных областей пространства, может приобретать только определенных дискретных значений.
Так, атомы излучают энергию в виде дискретных порций — световых квантов, или фотонов.
Оператором энергии в квантовой механике является гамильтониан. В стационарных состояниях квантовых систем энергия может иметь только те значения, которые соответствуют собственным значением гамильтониана. Для локализованных состояний энергия может иметь только определенные дискретные.

Прежде чем говорить об основных мероприятиях, обеспечивающих энергосбережение, т.е. выяснить, как можно сберечь энергию, необходимо четко определить, что представляет собой понятие "энергия"?

Энергия (греч. - действие, деятельность) - общая количественная мера различных форм движения материи.

Из данного определения вытекает:

Энергия - это нечто, что проявляется лишь при изменении состояния (положения) различных объектов окружающего нас мира;

Энергия - это нечто, способное переходить из одной формы в другую;

Энергия характеризуется способностью производить полезную для человека работу;

Энергия - это нечто, что можно объективно определить, количественно измерить.

Энергию в естествознании в зависимости от природы делят на следующие виды.

Механическая энергия - проявляется при взаимодей­ствии, движении отдельных тел или частиц.

К ней относят энергию движения или вращения тела, энер­гию деформации при сгибании, растяжении, закручивании, сжатии упругих тел (пружин). Эта энергия наиболее широко используется в различных машинах - транспортных и технологических.

Тепловая энергия - энергия неупорядоченного (хаотического) движения и взаимодействия молекул веществ.

Тепловая энергия, получаемая чаще всего при сжигании различных видов топлива, широко применяется для отопления, проведения многочисленных технологических процессов (нагревания, плавления, сушки, выпаривания, перегонки и т.д.).

Для сопоставления различных видов топлива и суммарного учета его запасов, оценки эффективности использования энергетических ресурсов, сравнения показателей теплоиспользующих устройств принята единица измерения - условное топливо , теплота сгорания которого принята за 29,33 МДж/кг (7000 ккал/кг). Для сравнительного анализа обычно используется единица измерения тонна условного топлива.

1т у.т.= 29,33·10 9 Дж = 7·10 6 ккал = 8,12·10 3 кВт·ч

Этот показатель соответствует хорошему малозольному углю, который иногда называется угольным эквивалентом. За рубежом для анализа используется условное топливо с теплотой сгорания 41,9 Мдж/кг. Этот показатель называется нефтяным эквавалентом.

Электрическая энергия - энергия движущихся по элек­трической цепи электронов (электрического тока).

Электрическая энергия применяется для получения механической энергии с помощью электродвигателей и осуществления механических процессов обработки материалов: дробления, измельчения, перемешивания; для проведения элек­трохимических реакций; получения тепловой энергии в элек­тронагревательных устройствах и печах; для непосредствен­ной обработки материалов (электроэррозионная обработка).

Химическая энергия - это энергия, "запасенная" в атомах веществ, которая высвобождается или поглощается при химических реакциях между веществами.

Химическая энергия либо выделяется в виде тепловой при проведении экзотермических реакций (например, горении топлива), либо преобразуется в электрическую в гальванических элементах и аккумуляторах. Эти источники энергии ха­рактеризуются высоким КПД (до 98 %), но низкой емкостью.

Магнитная энергия - энергия постоянных магнитов, об­ладающих большим запасом энергии, но "отдающих" ее весь­ма неохотно. Однако электрический ток создает вокруг себя протяженные, сильные магнитные поля, поэтому чаще всего говорят об электромагнитной энергии.

Электрическая и магнитная энергии тесно взаимосвязаны друг с другом, каждую из них можно рассматривать как "оборотную" сторону другой.

Электромагнитная энергия - это энергия электромагнитных волн, т.е. движущихся электрического и магнитного по­лей. Она включает видимый свет, инфракрасные, ультрафиолетовые, рентгеновские лучи и радиоволны.

Таким образом, электромагнитная энергия - это энергия излучения. Излучение переносит энергию в форме энергии электромагнитной волны. Когда излучение поглощается, его энергия преобразуется в другие формы, чаще всего в теплоту.

Ядерная энергия - энергия, локализованная в ядрах атомов так называемых радиоактивных веществ. Она высвобождается при делении тяжелых ядер (ядерная реакция) или синтезе легких ядер (термоядерная реакция).

Бытует и старое название данного вида энергии - атомная энергия, однако это название неточно отображает сущность явлений, приводящих к высвобождению колоссальных количеств энергии, чаще всего в виде тепловой и механической.

Гравитационная энергия - энергия, обусловленная взаимодействием (тяготением) массивных тел, она особенно ощутима в космическом пространстве. В земных условиях, это, например, энергия, "запасенная" телом, поднятым на определенную высоту над поверхностью Земли - энергия силы тяжести.

Таким образом, в зависимости от уровня проявления, можно выделить энергию макромира - гравитационную, энергию взаимодействия тел - механическую, энергию молекулярных взаимодействий - тепловую, энергию атомных взаимодействий - химическую, энергию излучения - электромагнитную, энергию, заключенную в ядрах атомов - ядерную.

Современная наука не исключает существование и других видов энергии, пока не зафиксированных, но не нарушающих единую естественнонаучную картину мира и понятие об энергии.

По большому счету понятие энергии, идея о ней искусственны и созданы специально для того, чтобы быть результатом наших размышлений об окружающем мире. В отличие от материи, о которой мы можем сказать, что она существует, энергия - это плод мысли человека, его "изобретение", построенное так, чтобы была возможность описать различные изменения в окружающем мире и в то же время говорить о постоянстве, сох­ранении чего-то, что было названо энергией, даже если наше представление об энергии будет меняться из года в год.

Единицей измерения энергии является 1 Дж (Джоуль). В то же время для измерения количества теплоты используют "старую" единицу - 1 кал (калория) = 4,18 Дж, для измерения механической энергии используют величину 1 кг·м = 9,8 Дж, электрической энергии - 1 кВт·ч = 3,6 МДж, при этом 1 Дж = 1 Вт·С.

Необходимо отметить, что в естественнонаучной литерату­ре тепловую, химическую и ядерную энергии иногда объеди­няют понятием внутренней энергии, т.е. заключенной внутри вещества.

В связи с развитием производственных технологий и значительным ухудшением экологической ситуации во многих регионах земного шара, человечество столкнулось с проблемой поиска новых источников энергии. С одной стороны, количество добываемой энергии должно быть достаточным для развития производства, науки и коммунально-бытовой сферы, с другой стороны, добыча энергии не должна отрицательно сказываться на окружающей среде.

Данная постановка вопроса привела к поиску так называемых альтернативных источников энергии — источников, соответствующих вышеуказанным требованиям. Усилиями мировой науки было обнаружено множество таких источников, на данный момент большинство из них уже используется более или менее широко. Предлагаем вашему вниманию их краткий обзор:

Солнечная энергия

Солнечные электростанции активно используются более чем в 80 странах, они преобразуют солнечную энергию в электрическую. Существуют разные способы такого преобразования и, соответственно, различные типы солнечных электростанций. Наиболее распространены станции, использующие фотоэлектрические преобразователи (фотоэлементы), объединенные в солнечные батареи. Большинство крупнейших фотоэлектрических установок мира находятся в США.

Энергия ветра

Ветроэнергетические установки (ветряные электростанции) широко используются в США, Китае, Индии, а также в некоторых западноевропейских странах (например в Дании, где 25% всей электроэнергии добывают именно таким способом). Ветроэнергетика является весьма перспективным источником альтернативной энергии, в настоящее время многие страны значительно расширяют использование электростанций данного типа.

Биотопливо

Главными преимуществами данного источника энергии перед другими видами топлива являются его экологичность и возобновляемость. К альтернативным источникам энергии относятся не все виды биотоплива: традиционные дрова тоже являются биотопливом, но не являются альтернативным источником энергии. Альтернативное биотопливо бывает твердым (торф, отходы деревообработки и сельского хозяйства), жидким (биодизель и биомазут, а также метанол, этанол, бутанол) и газообразное (водород, метан, биогаз).

Энергия приливов и волн

В отличие от традиционной гидроэнергетики, использующей энергию водного потока, альтернативная гидроэнергетика пока не получила широкого распространения. К главным минусам приливных электростанций относятся высокая стоимость их строительства и суточные изменения мощности, их за которых электростанции этого типа целесообразно использовать только в составе энергосистем, использующих также и другие источники энергии. Основные плюсы — высокая экологичность и низкая себестоимость получения энергии.

Тепловая энергия Земли

Для разработки этого источника энергии используются геотермальные электростанции, использующие энергию высокотемпературных грунтовых вод, а также вулканов. На данный момент более распространенной является гидротермальная энергетика, использующая энергию горячих подземных источников. Петротермальная энергетика, основанная на использовании «сухого» тепла земных недр, на данный момент развита слабо; основной проблемой считается низкая рентабельность данного способа получения энергии.

Атмосферное электричество

(Вспышки молний на поверхности Земли происходят практически одновременно в самых разных местах планеты )

Грозовая энергетика, основывающаяся на захвате и накоплении энергии молний, пока находится в стадии становления. Главными проблемами грозовой энергетики являются подвижность грозовых фронтов, а также быстрота атмосферных электрических разрядов (молний), затрудняющая накопление их энергии.

Энергия (от греческого energeia действие, деятельность ) - общая мера (количественная оценка) различных форм движения материи, рассматриваемых в физике.

Согласно представлениям физической науки, энергия - это способность тела или объекта совершать работу. Для количественной характеристики качественно различных форм движения и соответствующих им взаимодействий введены различные виды энергии. Человек в своей повседневной жизни наиболее часто встречается со следующими видами энергии: механической, электрической, электромагнитной, тепловой, химической, ядерной и т.д.

Кинетическая энергия – мера механического движения, равная для твердого тела половине произведения массы тела на квадрат ее скорости. К ней относят механическую энергию движения частицы или тела, тепловую энергию, ядерную энергию и т.д.

Если энергия - результат изменения взаимного расположения частиц системы и их положения по отношению к другим телам, то она называется потенциальной. К ней относят энергию масс, притягивающихся по закону всемирного тяготения, химическую энергию, энергию положения однородных частиц, например, энергию упругого деформированного тела и т.п. .

Механическая энергия – энергия механического движения и взаимодействия тел или их частей. Механическая энергия системы тел равна сумме кинетической и потенциальной энергий этой системы. Она проявляется при взаимодействии, движении отдельных тел или частиц.

К ней относят энергию поступательного движения или вращения тела, энергию деформации при сгибании, растяжении, сжатии упругих тел (пружин). Эта энергия наиболее широко используется в различных машинах - транспортных и технологических .

Тепловая энергия - энергия хаотического поступательного и вращательного движения молекул вещества. Для твердого тела это энергия колебания атомов в молекулах, находящихся в узлах кристаллической решетки.

Тепловая энергия возникает только в результате превращения других видов энергии, например, при сжигании различных видов топлив их химическая энергия переходит в тепловую. Она применяется для отопления, проведения многочисленных технологических процессов (нагревания, плавления, сушки, выпаривания, перегонки и т.д.).

Электрическая энергия - энергия упорядоченно движущихся по замкнутой электрической цепи заряженных частиц или тел (электронов, ионов).

Электрическая энергия применяется для получения механической энергии, тепловой энергии или любой другой потребной энергии.

Химическая энергия - это энергия, "запасенная" в атомах веществ, которая высвобождается или поглощается при химических реакциях между веществами.

Химическая энергия либо выделяется в виде тепловой энергии при проведении экзотермических реакций (например, горении топлива), либо преобразуется в электрическую энергию в гальванических элементах и аккумуляторах .

Ядерная энергия – внутренняя энергия атомного ядра, связанная с движением и взаимодействием образующих ядро нуклонов. Она выделяется в результате цепной ядерной реакции деления тяжелых ядер (ядерная реакция) или при синтезе легких ядер (термоядерная реакция). В ядерной энергетике пока используется только первый способ, т.к. использование второго связано с нерешенной еще проблемой осуществления управляемой термоядерной реакции.

Гравитационная энергия - энергия взаимодействия (притяжения) между любыми двумя телами и определяемая их массами. Она особенно ощутима в космическом пространстве. В земных условиях, это, например, энергия, которую "запасает" тело, при его подъеме на определенную высоту над поверхностью Земли.

3.1 Энергия и её виды

3.2 Способы получения и преобразования энергии

3.3 Электрические и тепловые нагрузки и способы их регулирования

3.4 Прямое преобразование солнечной энергии в тепловую и электрическую

3.5 Ветроэнергетика

3.6 Гидроэнергетика

3.7 Биоэнергетика

3.8 Транспортирование тепловой и электрической энергии

3.8.1 Транспортирование тепловой энергии

3.8.2 Транспортирование электрической энергии

3.9 Энергетическое хозяйство промышленных предприятий

3.1 Энергия и её виды

Энергия (от греч. energeie - действие, деятельность) представляет собой общую количественную меру движения и взаимодействия всех видов материи. Это способность к совершению работы, а работа совершается тогда, когда на объект действует физическая сила (давление или гравитация). Работа - это энергия в действии.

Во всех механизмах при совершении работы энергия переходит из одного вида в другой. Но при этом нельзя получить энергии одного вида больше, чем другого, при любых ее превращениях, т. к. это противоречит закону сохранения энергии.

Различают следующие виды энергии: механическая; электрическая; тепловая; магнитная; атомная.

Электрическая энергия является одним из совершенных видов энергии. Её широкое использование обусловлено следующими факторами:

Получением в больших количествах вблизи месторождения ресурсов и водных источников;

Возможностью транспортировки на дальние расстояния с относительно небольшими потерями;

Способностью трансформации в другие виды энергии: механическую, химическую, тепловую, световую;

Отсутствием загрязнения окружающей среды;

Внедрением на основе электроэнергии принципиально новых прогрессивных технологических процессов с высокой степенью автоматизации.

Тепловая энергия широко используется на современных производствах и в быту в виде энергии пара, горячей воды, продуктов сгорания топлива.

Преобразование первичной энергии во вторичную, в частности, в электрическую, осуществляется на станциях, которые в своем названии содержат указания на то, какой вид первичной энергии преобразуется на них в электрическую:

На тепловой электрической станции (ТЭС) - тепловая;

Гидроэлектростанции (ГЭС) - механическая (энергия движения воды);

Гидроаккумулирующей станции (ГАЭС) - механическая (энергия движения предварительно наполненной в искусственном водоеме воды);

Атомной электростанции (АЭС) - атомная (энергия ядерного топлива);

Приливной электростанции (ПЭС) - приливов.

В Республике Беларусь более 95 % энергии вырабатывается на ТЭС, которые по назначению делятся на два типа:

Конденсационные тепловые электростанции (КЭС), предназначенные для выработки только электрической энергии;

Теплоэлектроцентрали (ТЭЦ), на которых осуществляется комбинированное производство электрической и тепловой энергии.

3.2 Способы получения и преобразования энергии

Тепловая электростанция включает комплект оборудования, в котором внутренняя химическая энергия топлива (твердого, жидкого или газообразного) превращается в тепловую энергию воды и пара, преобразующуюся в механическую энергию вращения, которая и вырабатывает электрическую энергию. Схема выработки электроэнергии на ТЭС представлена на рисунке 6.

Как видно из представленной схемы, поступающее со склада (С) в парогенератор (ПГ) топливо при сжигании выделяет тепловую энергию, которая, нагревая подведенную с водозабора (ВЗ) воду, преобразует ее в энергию водяного пара с температурой 550 °С. В турбине (Т) энергия водяного пара превращается в механическую энергию вращения, передающуюся на генератор (Г), который превращает ее в электрическую. В конденсаторе пара (К) отработанный пар с температурой 123 …125 °С отдает скрытую теплоту парообразования охлаждающей его воде и с помощью циркулярного насоса (Н) в виде конденсата вновь подается в котел-парогенератор.

Рисунок 6 - Схема работы ТЭС

Схема ТЭЦ отличается от ТЭС тем, что взамен конденсатора устанавливается теплообменник, где пар при значительном давлении нагревает воду, подаваемую в главные тепловые магистрали.

Котельная установка представляет собой комплекс устройств для получения водяного пара под давлением или горячей воды. Она состоит из котлоагрегата и вспомогательного оборудования, газо- и воздухопроводов, трубопроводов пара и воды с арматурой, тягодутьевых устройств и др.

Районные , или производственные котельные предназначены для централизованного теплоснабжения жилищно-коммунального хозяйства или самого предприятия. С вводом в действие ТЭЦ некоторые из них остались без дела и могут использоваться как резервные и пиковые, и тогда их называют резервно-пиковыми.

Газотурбинная установка - это двигатель, в лопаточном аппарате которого потенциальная энергия газа преобразуется в кинетическую энергию и затем частично превращается в механическую работу, которая преобразуется в электрическую энергию.

Рисунок 7 - Схема газотурбинной установки с подводом тепловой энергии при = с onst

1 - воздушный компрессор; 2 - газовая турбина; 3 - электрогенератор; 4 - топливный насос; 5 - камера сгорания

В простейшей газотурбинной установке постоянного горения (рисунок 7) воздух, сжатый до некоторого давления в компрессоре 1, поступает в камеру сгорания 5, где его температура повышается за счет сжигания топлива, подающего топливным насосом 4, при постоянном давлении. Продукты сгорания под давлением и при высокой температуре подводятся к турбине 2, в которой совершается работа расширения газа. При этом давление и температура падают. Далее продукты сгорания выбрасываются в атмосферу.

Парогазовая установка - это турбинная теплосиловая установка, в тепловом цикле которой используются два рабочих тела - водяной пар и дымовые газы, поступающие из котлоагрегата.

Поступающий из атмосферы в компрессор 1 (рисунок 8) воздух сжимается с повышением температуры и подается в камеру сгорания 5, в которую при помощи топливного насоса и впрыскивается топливо. В камере сгорания 5 происходит горение топлива, а образующиеся газы поступают в газовую турбину 2, где и совершается работа.

Рисунок 8 - Схема парогазовой установки

1 - воздушный компрессор; 2 - газовая турбина; 3 - электрогенератор; 4 – топ-ливный насос; 5 - камера сгорания; 6 - подогреватель; 7 - котел; 8 - паровая турбина; 9 - конденсатор водяного пара; 10 - питательный насос

Отработанные газы с температурой 350 °С и пониженным давлением поступают в подогреватель 6, где отдают часть теплоты для подогрева питательной воды, поступающей в котел 7 и, охладившись при этом, сбрасываются в атмосферу. Питательная вода используется в котле для получения пара, который поступает в паровую турбину 8 с температурой

540 °С. В ней пар расширяется, производя техническую работу. Отработанный в турбине пар поступает в конденсатор 9, в котором конденсируется, а образовавшийся конденсат при помощи насоса 10 направляется сначала в подогреватель 6, где воспринимает тепло отработавших в газовой турбине газов, а затем - в паровой котел 7. Расходы пара и газа подбираются таким образом, чтобы вода воспринимала максимальное количество теплоты газов. Термический коэффициент полезного действия установок - свыше 60 %.

О том, насколько эффективно внедрение паротурбинных установок, показывает внедрение в Витебском производственном объединении «Витязь» двух паротурбинных установок, которые способны вырабатывать 1500 кВт электроэнергии (по 750 кВт каждая) и ежемесячно экономить до 30 тыс. долларов на покупку энергии. Срок окупаемости проекта - чуть больше года.

Гидроэлектростанция представляет собой комплекс гидротехнических сооружений и энергетического оборудования, посредством которых энергия водных потоков или расположенных на относительно более высоких уровнях водоёмов преобразуется в электрическую энергию.

Технологический процесс получения электроэнергии на ГЭС включает:

Создание разных уровней воды в верхнем и нижнем бьефах;

Превращение энергии потока воды в энергию вращения вала гидравлической турбины;

Превращение гидрогенератором энергии вращения в энергию электрического тока.

Гидроаккумулирующая электростанция представляет собой такую гидроэлектростанцию, в которой поступление воды в водоем верхнего бьефа обеспечивается искусственно, посредством насосов, работающих за счет электроэнергии из системы. Она оборудована кроме турбин насосами (помпами) или только турбинами, которые могут работать в режиме помп (обратные турбины) для подъема воды в часы малых нагрузок в энергосистеме с нижнего бьефа в водохранилище верхнего бьефа за счет подключения к энергосистеме. При больших нагрузках ГАЭС работают как обычные ГЭС.

Тепловые схемы АЭС зависят от типа реактора; вида теплоносителя; состава оборудования и могут быть одно-, двух-, и трехконтурными.

Схема выработки электроэнергии на одноконтурной АЭС представлена па рисунке 9. Пар вырабатывается непосредственно в реакторе и поступает в паровую турбину. Отработанный пар конденсируется в конденсаторе, и конденсат подается насосом в реактор. Схема проста, экономична. Однако пар (рабочее тело) на выходе из реактора становится радиоактивным, что предъявляет повышенные требования к биологической защите и затрудняет проведение контроля и ремонта оборудования.

Рисунок 9 - Тепловая схема простейшей одноконтурной атомной электростанции

1 - атомный реактор; 2 - турбина; 3 - электрогенератор; 4- конденсатор водяных паров; 5 - питательный насос

В двухконтурных схемах производства электроэнергии на АЭС имеется два самостоятельных контура (рисунок 10) - теплоносителя и рабочего тела. Общее оборудование у них - парогенератор, в котором нагретый в реакторе теплоноситель отдает свою теплоту рабочему телу и при помощи циркуляционного насоса возвращается в реактор.

Рисунок 10 - Тепловая схема простейшей двухконтурной атомной электростанции

1 - атомный реактор; 2 - теплообменник-парогенератор; 3 - главный циркуляционный насос; 4 - турбина; 5 - электрогенератор; 6 - конденсатор водяных паров; 7 - питательный насос

Давление в первом контуре (контуре теплоносителя) значительно выше, чем во втором. Полученный в теплогенераторе пар подается в турбину, совершает работу, затем конденсируется, и конденсат питательным насосом подается в парогенератор. Хотя парогенератор усложняет установку и уменьшает её экономичность, но препятствует радиоактивности во втором контуре.

В трехконтурной схеме теплоносителями первого контура служат жидкие металлы (например, натрий). Радиоактивный натрий из реактора поступает в теплообменник промежуточного контура с натрием, которому отдает теплоту и возвращается в реактор. Давление натрия во втором контуре выше, чем в первом, что исключает утечку радиоактивного натрия. В промежуточном втором контуре натрий отдает теплоту рабочему телу (воде) третьего контура. Образовавшийся пар поступает в турбину, совершает работу, конденсируется и поступает в парогенератор.

Трехконтурная схема требует больших затрат, но обеспечивает безопасную работу реактора.

Отличие ТЭС от АЭС состоит в том, что источником теплоты на ТЭС является паровой котел, в котором сжигается органическое топливо; на АЭС -ядерный реактор, теплота в котором выделяется делением ядерного топлива, обладающего высокой теплотворной способностью (в миллионы раз выше, чем органическое топливо). Один грамм урана содержит 2,6 10 ядер, при делении которых выделяется 2000 кВт ч энергии. Для получения такого же количества энергии нужно сжечь более 2000 кг угля.

Однако при эксплуатации АЭС образуется большое количество радиоактивных веществ в топливе, теплоносителе, конструкционных материалах. Поэтому АЭС является источником радиационной опасности для обслуживающего персонала и проживающего вблизи населения, что повышает требование к надежности и безопасности её эксплуатации.

Теплоэлектрацентраль (ТЭЦ) - это тепловая электростанция, выраба-тывающая не только электрическую энергию, но и тепло, отпускаемое потре-бителям в виде пара и горячей воды для коммунально-бытового потребления. При такой комбинированной выработке тепловой и электрической энергии в тепловую сеть отдается главным образом теплота отработавшего в турбинах пара (или газа), что приводит к снижению расхода топлива на 25-30 % по сравнению с раздельной выработкой энергии на КЭС или ГРЭС (государственные районные электростанции) и теплоты в районных котельных.