Акрил ткань из чего делают. Акрил - это что за материал и как его применять? Одежда и постельное белье из микрофибры

Основу структурной организации клетки составляют биологические мембраны. Плазматическая мембрана (плазмалемма) — это мембрана, окружающая цитоплазму живой клетки. Мембраны состоят из липидов и белков. Липиды (в основном фосфолипиды) образуют двойной слой, в котором гидрофобные «хвосты» молекул обращены внутрь мембраны, а гидрофильные — к её поверхностям. Молекулы белков могут располагаться на внешней и внут-ренней поверхности мембраны, могут частично погружать-ся в слой липидов или пронизывать её насквозь. Большая часть погруженных белков мембран — ферменты. Это жид-костно-мозаичная модель строения плазматической мем-браны. Молекулы белка и липидов подвижны, что обеспе-чивает динамичность мембраны. В состав мембран входят также углеводы в виде гликолипидов и гликопротеинов (гликокаликс), располагающихся на внешней поверхности мембраны. Набор белков и углеводов на поверхности мем-браны каждой клетки специфичен и является своеобраз-ным указателем типа клеток.

Функции мембраны:

  1. Разделительная. Она заключается в образовании барьера между внутренним содержимым клетки и внешней средой.
  2. Обеспечение обмена веществ между цитоплазмой и внешней средой. В клетку поступают вода, ионы, неорганические и органические молекулы (транспортная функ-ция). Во внешнюю среду выводятся продукты, образован-ные в клетке (секреторная функция).
  3. Транспортная. Транспорт через мембрану может проходить разными путями. Пассивный транспорт осуществляется без затрат энергии, путем простой диффузии, осмоса или облегченной диффузии с помощью белков- переносчиков. Активный транспорт — с помощью белков-переносчиков, и он требует затрат энергии (например, натрий-калиевый насос). Материал с сайта

Крупные молекулы биополимеров попадают внутрь клетки в результате эндоцитоза. Его разделяют на фагоци-тоз и пиноцитоз. Фагоцитоз — захват и поглощение клет-кой крупных частиц. Явление впервые было описано И.И. Мечниковым. Сначала вещества прилипают к плаз-матической мембране, к специфическим белкам-рецеп-торам, затем мембрана прогибается, образуя углубление.

Образуется пищеварительная вакуоль. В ней переварива-ются поступившие в клетку вещества. У человека и живот-ных к фагоцитозу способны лейкоциты. Лейкоциты по-глощают бактерии и другие твердые частицы.

Пиноцитоз — процесс захвата и поглощения капель жидкости с растворенными в ней веществами. Вещества прилипают к белкам мембраны (рецепторам), и капля рас-твора окружается мембраной, формируя вакуоль. Пиноци-тоз и фагоцитоз происходят с затратой энергии АТФ.

  1. Секреторная. Секреция — выделение клеткой ве-ществ, синтезированных в клетке, во внешнюю среду. Гормоны, полисахариды, белки, жировые капли, заключа-ются в пузырьки, ограниченные мембраной, и подходят к плазмалемме. Мембраны сливаются, и содержимое пу-зырька выводится в среду, окружающую клетку.
  2. Соединение клеток в ткани (за счет складчатых вы-ростов).
  3. Рецепторная. В мембранах имеется большое число рецепторов — специальных белков, роль которых заключа-ется в передаче сигналов извне внутрь клетки.

Не нашли то, что искали? Воспользуйтесь поиском

На этой странице материал по темам:

  • плазматическая мембрана строение и функции
  • строение и функции плазматический мембраны
  • плазматическая мембрана строение и функции кратко
  • плазматическая мембрана кратко
  • клеточная мембрана строение и функции кратко

Плазматическая мембрана, или плазмалемма, представляет собой поверхностный структурированный слой клетки, образованный жизнедеятельной цитоплазмой. Эта периферическая структура обусловливает связь клетки с окружающей средой, ее регуляцию и защиту. Поверхность ее обычно имеет выросты и складки, что способствует соединению клеток между собой.

Живая часть клетки - это ограниченная мембраной, упорядоченная, структурированная система биополимеров и внутренних мембранных структур, участвующих в совокупности метаболических и энергетических процессов, осуществляющих поддержание и воспроизведение всей системы в целом.

Важной особенностью является то, что в клетке нет открытых мембран со свободными концами. Клеточные мембраны всегда ограничивают полости или участки, закрывая их со всех сторон, несмотря на размеры и сложную форму мембранных структур. В состав мембран входят белки (до 60 %), липиды (около 40 %) и некоторое количество углеводов.

По биологической роли мембранные белки можно разделить на три группы: ферменты, рецепторные белки и структурные белки. Разные типы мембран обычно имеют свой набор ферментных белков. Рецепторные белки, как правило, содержатся в поверхностных мембранах для рецепции гормонов, узнавания поверхности соседних клеток, вирусов и т. п. Структурные белки осуществляют стабилизацию мембран, принимают участие в формировании полиферментных комплексов. Значительная часть белковых молекул взаимодействует с другими компонентами мембран - молекулами липидов - с помощью ионных и гидрофобных связей.

Состав липидов, входящих в мембраны клетки, разнообразен и представлен глицеролипидами, сфинголипидами, холестерином и др. Основным признаком мембранных липидов является их амфипатичность, т. е. наличие двух разнокачественных групп в их составе. Неполярная (гидрофобная) часть представлена остатками высших жирных кислот. Роль полярной гидрофильной группировки играют остатки фосфорной кислоты (фосфолипиды), серной кислоты (сульфолипиды), галактозы (галактолипиды). Наиболее часто в мембранах клетки присутствует фосфатидилхолин (лецитин).

Немаловажная роль принадлежит фосфолипидам как компонентам, определяющим электрические, осмотические или катионообменные свойства мембран. Помимо структурной, фосфолипиды выполняют и специфические функции - участвуют в переносе электронов, определяют полупроницаемость мембран, способствуют стабилизации активной конформации молекул ферментов путем создания гидрофобной

Разделение молекул липидов на две функционально различные части - неполярную, не несущую зарядов (хвосты из жирных кислот), и заряженную полярную головку - предопределяет их специфические свойства и взаимную ориентацию.

Мембраны некоторых типов клеток имеют асимметричную структуру и неравноценные функциональные свойства. Так, некоторые токсические вещества оказывают большое влияние на внешнюю сторону мембраны; на внешней половине билицидного слоя эритроцитов содержится больше холинсодержащих липидов. Асимметрия проявляется также в разной толщине внутреннего и внешнего мембранных слоев.

Важным свойством мембранных структур клетки является их способность к самосборке после разрушающего воздействия определенной интенсивности. Способность к репарации имеет большое значение в адаптивных реакциях клеток живых организмов.

В соответствии с классической моделью строения мембран молекулы белков расположены на внутренней и внешней сторонах липидной прослойки, которая в свою очередь состоит из двух ориентированных слоев. По новым данным в построении гидрофобного слоя кроме молекул липидов участвуют также боковые гидрофобные цепи белковых молекул. Белки не только покрывают липидный слой, но и входят в его состав,


часто образуя глобулярные структуры - мозаичный тип мембран-, характеризующийся определенной динамичностью структуры (рис. 49).

Микроанатомическая картина мембран некоторых типов характеризуется наличием белковых перетяжек между внешними белковыми обкладками липидной прослойки либо липидных мицелл на всю толщину мембраны (рис. 49, д, з). Толщина мембран колеблется от 6 до 10 нм и ее можно наблюдать только в электронном микроскопе.

Химический состав плазматической мембраны, покрывающей растительные и животные клетки, практически одинаков. Ее структурная организация и упорядоченность обусловливают такую жизненно важную функцию мембран, как пол у проницаемость - способность избирательного пропускания в клетку и выход из нее разных молекул и ионов. Благодаря этому в клетке создается и поддерживается соответствующая концентрация ионов и осуществляются осмотические явления. Создаются также условия для нормального функционирования клеток в среде, которая может отличаться по концентрации от клеточного содержимого.

Мембраны как основные структурные элементы клетки обусловливают свойства практически всех известных ее органелл: они окружают ядро, формируют структуру хлоропластов, митохондрий и аппарата Гольджи, пронизывают массу цитоплазмы, образуя эндоплазматическую сеть, по которой осуществляется транспорт веществ. В них содержатся важные ферменты и системы активного переноса веществ в клетку и удаления их из клетки. Клеточная мембрана, как и отдельные органеллы клетки, представляет собой определенные молекулярные комплексы, выполняющие различные функции.

Благодаря своим физико-химическим, биологическим и структурным особенностям мембраны выполняют главную функцию защитного молекулярного барьера - осуществляют регуляцию процессов перемещения веществ в разных направлениях. Очень важна роль мембран в энергетических процессах, передаче нервных импульсов, фотосинтетических реакциях и т. д.

Вследствие макромолекулярной организации клетки процессы катаболизма и анаболизма в ней разобщены. Так, окисление аминокислот, липидов и углеводов протекает в митохондриях, тогда как биосинтетические процессы - в различных структурных образованиях цитоплазмы (хлоропласты, эндоплазматический ретикулум, аппарат Гольджи).

Мембраны, независимо от их химической и морфологической природы, - эффективное средство локализации процессов в клетке. Именно они разделяют протопласт на отдельные объемные зоны, т. е. дают возможность осуществляться в одной клетке разным реакциям и предупреждают смешивание образующихся веществ. Это свойство клетки быть как бы разделенной на отдельные участки с разной метаболической деятельностью называется компартментацией.

В связи с тем что липиды нерастворимы в воде, мембраны с их содержимым формируются там, где необходимо создать границу раздела с водной средой, например на поверхности клетки, на поверхности вакуоли или эндоплазматической сети. Не исключено, что формирование липидных слоев в мембранах биологически целесообразно также в случае неблагоприятных электрических условий в клетке, для создания изолирующих (диэлектрических) прослоек на пути движения электронов.

Проникновение веществ через мембрану осуществляется благодаря эндоцитозу, в основе которого лежит способность клетки активно поглощать или всасывать из окружающей среды питательные вещества в виде мелких пузырьков жидкости (пиноцитоз) или твердых частичек (фагоцитоз).

Субмикроскопическое строение мембраны обусловливает образование или удерживание на определенном уровне разности электрических потенциалов между внешней и внутренней ее сторонами. Имеется много доказательств участия этих потенциалов в процессах проникновения веществ через плазматическую мембрану.

Наиболее легко происходит пассивный транспорт веществ через мембраны; в основе которого лежит явление диффузии по градиенту концентраций или электрохимических потенциалов. Он осуществляется через поры мембран, т. е. те белоксодержащие участки или зоны с преобладанием липидов, которые проницаемы для определенных молекул и являются своеобразными молекулярными ситами (селективными каналами).

Однако большинство веществ проникает через мембраны с помощью специальных транспортных систем, так называемых переносчиков (транслокаторов). Они представляют собой специфические мембранные белки или функциональные комплексы липопротеидов, обладающих способностью временно связываться с необходимыми молекулами на одной стороне мембраны, переносить и освобождать их уже на другой стороне. Такая облегченная опосредованная диффузия с помощью носителей обеспечивает перенос веществ через мембрану в направлении градиента концентраций. Если один и тот же переносчик облегчает перенос в одном направлении, а затем другое вещество переносит в противоположном/такой процесс носит название обменной диффузии.


Трансмембранный перенос ионов эффективно осуществляют и некоторые антибиотики - валиномицин, грамицидин, нигерицин и другие ионофоры.

Широко распространен активный транспорт веществ через мембраны. Характерная его особенность - возможность переноса веществ против градиента концентрации, что неминуемо требует энергетических затрат. Обычно для осуществления этого типа трансмембранного переноса используется энергия АТФ. Практически во всех типах мембран имеются специальные транспортные белки, обладающие АТФазной активностью, как например, К + -Ма+-АТФаза.

Гликокаликс. У многих клеток снаружи от плазматической мембраны обнаруживается слой, который называется гликокаликс. Он включает в себя ветвящиеся молекулы полисахаридов, связанных с мембранными белками (гликопротейды), а также липидами (гликолипиды) (рис. 50). Этот слой выполняет множество функций, дополняющих функции мембран.

Гликокаликс, или надмембранный комплекс, находясь в непосредственном контакте с внешней средой, играет важную роль в рецепторной функции поверхностного аппарата клеток (фагоцитоз пищевых комочков). Он же может выполнять специальные функции (гликопротеин эритроцитов млекопитающих создает отрицательный заряд на их поверхности, что препятствует их агглютинации). Сильно развит гликокаликс солевых клеток и клеток реабсорбционных отделов эпителиальных осморегулирующих их и выделительных канальцев.

Углеводные компоненты гликокаликса благодаря чрезвычайному разнообразию химических связей и поверхностному расположению являются маркерами, придающими специфичность «рисунку» поверхности каждой клетки, индивидуализирующими ее, и тем самым обеспечивают «узнавание» клетками друг друга. Считается, что рецепторы тканевой совместимости сосредоточены также в гликокаликсе.

Установлено, что в гликокаликсе микроворсинок клеток кишечного эпителия адсорбируются гидролитические ферменты. Такое фиксированное положение биокатализаторов создает базу для качественно иного типа пищеварения - так называемого пристеночного пищеварения: Характерной особенностью гликокаликса является высокая скорость обновления поверхностных молекулярных структур, чем обусловливается большая функциональная и филогенетическая пластичность клеток, возможность генетического контроля адаптации к условиям среды.

Модификации плазматической мембраны. Плазматическая мембрана многих клеток часто имеет разнообразные и специализированные поверхностные структуры. При этом образуются сложно организованные участки клетки: а) различные типы межклеточных контактов (взаимодействий); б) микроворсинки; в) реснички; г) жгутики, д) отростки чувствительных клеток и т. п.

Межклеточные соединения (контакты) образуются с помощью ультрамикроскопических образований в виде выростов и выпячиваний, зон слипаниями других структур механической связи между клетками, особенно выраженных в покровных пограничных тканях. Они обеспечили образование и развитие тканей и органов многоклеточных организмов.

Микроворсинки представляют собой многочисленные выросты цитоплазмы, ограниченные плазматической мембраной. Очень много микроворсинок обнаружено на поверхности клеток кишечного и почечного эпителия. Они увеличивают площадь контакта с субстратом и средой.

Реснички - многочисленные поверхностные структуры плазматической мембраны с функцией перемещения клеток в пространстве и их питания (реснички на поверхности клеток инфузорий, коловраток, реснитчатый эпителий дыхательных путей и т. д.).

Жгутики - длинные и малочисленные образования, обеспечивающие возможность клеткам и организмам перемещаться в жидкой среде (свободноживущие одноклеточные жгутиковые, сперматозоиды, зародыши беспозвоночных, многие бактерии и т. п.).

В основе эволюции многих рецепторных органов чувств беспозвоночных животных лежит клетка, снабженная жгутиками, ресничками или их производными. Так, световые, рецепторы сетчатки (колбочки и палочки) дифференцируются из структур, напоминающих реснички и содержащих многочисленные складки мембраны со светочувствительным пигментом. Другие типы рецепторных клеток (химические, слуховые и т. п.) также образуют сложные структуры за счет цитоплазматических выростов, одетых плазматической мембраной.

Специфическим типом межклеточных связей являются плазмодесмы растительных клеток, представляющие собой субмикроскопические канальцы, пронизывающие оболочки и выстланные плазматической мембраной, которая таким образом переходит из одной клетки в другую не прерываясь. Внутри плазмодесм часто содержатся мембранные трубчатые элементы, соединяющие цистерны эндоплазматического ретикулума соседних клеток. Образуются плазмодесмъузо время деления клетки, когда формируется первичная клеточная оболочка. Функционально плазмодесмы интегрируют растительные клетки организма в единую взаимодействующую систему - симпласт. С их помощью обеспечивается межклеточная циркуляция растворов, со держащих органические питательные вещества, ионы, липидные капли, вирусные частицы и т. п. По плазмодесмам идет передача также биопотенциалов и другой информации.

Источник---

Богданова, Т.Л. Справочник по биологии/ Т.Л. Богданова [и д.р.]. – К.: Наукова думка, 1985.- 585 с.

Снаружи клетка покрыта плазматической мембраной (или наружной клеточной мембраной) толщиной около 6-10нм.

Клеточная мембрана это плотные пленки из белков и липидов (в основном, фосфолипидов). Молекулы липидов расположены упорядоченно - перпендикулярно к поверхности, в два слоя, так, что их части, интенсивно взаимодействующие с водой (гидрофильные), направлены наружу, а части, инертные к воде (гидрофобные) - внутрь.

Молекулы белка расположены несплошным слоем на поверхности липидного каркаса с обеих его сторон. Часть их погружена в липидный слой, а некоторые проходят через него насквозь, образуя участки, проницаемые для воды. Эти белки выполняют различные функции - одни из них являются ферментами, другие - транспортными белками, участвующими в переносе некоторых веществ из окружающей среды в цитоплазму и в обратном направлении.

Основные функции клеточной мембраны

Одним из основных свойств биологических мембран является избирательная проницаемость (полупроницаемость) - одни вещества проходят через них с трудом, другие легко и даже в сторону большей концентрации Так, для большинства клеток концентрация ионов Na внутри значительно ниже, чем в окружающей среде. Для ионов K характерно обратное соотношение: их концентрация внутри клетки выше, чем снаружи. Поэтому ионы Na всегда стремятся проникнуть в клетку, а ионы K - выйти наружу. Выравниванию концентраций этих ионов препятствует присутствие в мембране особой системы, играющей роль насоса, который откачивает ионы Na из клетки и одновременно накачивает ионы K внутрь.

Стремление ионов Na к перемещению снаружи внутрь используется для транспорта сахаров и аминокислот внутрь клетки. При активном удалении ионов Na из клетки создаются условия для поступления глюкозы и аминокислот внутрь ее.


У многих клеток поглощение веществ происходит также путем фагоцитоза и пиноцитоза. При фагоцитозе гибкая наружная мембрана образует небольшое углубление, куда попадает захватываемая частица. Это углубление увеличивается, и, окруженная участком наружной мембраны, частица погружается в цитоплазму клетки. Явление фагоцитоза свойственно амебам и некоторым другим простейшим, а также лейкоцитам (фагоцитам). Аналогично происходит и поглощение клетками жидкостей, содержащих необходимые клетке вещества. Это явление было названо пиноцитозом .

Наружные мембраны различных клеток существенно отличаются как по химическому составу своих белков и липидов, так и по их относительному содержанию. Именно эти особенности определяют разнообразие в физиологической активности мембран различных клеток и их роль, в жизнедеятельности клеток и тканей.

С наружной мембраной связана эндоплазматическая сеть клетки. При помощи наружных мембран осуществляются различные типы межклеточных контактов, т.е. связь между отдельными клетками .

Для многих типов клеток характерно наличие на их поверхности большого количества выступов, складок, микроворсинок. Они способствуют как значительному увеличению площади поверхности клеток и улучшению обмена веществ, так и более прочным связям отдельных клеток друг с другом.

У растительных клеток снаружи клеточной мембраны имеются толстые, хорошо различимые в оптический микроскоп оболочки, состоящие из клетчатки (целлюлозы). Они создают прочную опору растительным тканям (древесина).

Некоторые клетки животного происхождения тоже имеют ряд внешних структур, находящихся поверх клеточной мембраны и имеющих защитный характер. Примером может быть хитин покровных клеток насекомых.

Функции клеточной мембраны (кратко)

Функция Описание
Защитный барьер Отделяет внутренние органеллы клетки от внешней среды
Регулирующая Производит регуляцию обмена веществ между внутренним содержимым клетки и наружной средой
Разграничивающая (компартментализация) Разделение внутреннего пространства клетки на независимые блоки (компартменты)
Энергетическая - Накопление и трансформация энергии;
- световые реакции фотосинтеза в хлоропластах;
- Всасывание и секреция.
Рецепторная (информационная) Участвует в формировании возбуждения и его проведения.
Двигательная Осуществляет движение клетки или отдельных ее частей.

Плазматическая мембрана выполняет ряд важнейших функций:

1) Барьерная. Барьерная функция плазматической мембраны заключается в ограничении свободной диффузии веществ из клетки в клетку, предотвращении утечки водорастворимого содержимого клетки. Но поскольку клетка должна получать необходимые питательные вещества, выделять конечные продукты метаболизма, регулировать внутриклеточные концентрации ионов, то в ней образовались специальные механизмы переноса веществ через клеточную мембрану.

2) Транспортная. К транспортной функции относится обеспечение поступления и выведения различных веществ в клетку и из клетки. Важное свойство мембраны - избирательная проницаемость , или полупроницаемость. Она легко пропускает воду и водорастворимые газы и отталкивает полярные молекулы, такие как глюкоза или аминокислоты.

Существует несколько механизмов транспорта веществ через мембрану:

пассивный транспорт;

активный транспорт;

транспорт в мембранной упаковке.

Пассивный транспорт. Диффузия - это движение частиц среды, приводящее к переносу вещества из зоны, где его концентрация высока в зону с низкой концентрацией. При диффузионном транспорте мембрана функционирует как осмотический барьер. Скорость диффузии зависит от величины молекул и их относительной растворимости в жирах. Чем меньше размеры молекул и чем более они жирорастворимы (липофильны), тем быстрее произойдет их перемещение через липидный бислой. Диффузия может быть нейтральной (перенос незаряженных молекул) и облегченной (с помощью специальных белков переносчиков). Скорость облегченной диффузии выше, чем нейтральной. Максимальной проникающей способностью обладает вода, так как ее молекулы малы и незаряжены. Диффузия воды через клеточную мембрану называется осмосом. Предполагается, что в клеточной мембране для проникновения воды и некоторых ионов существуют специальные "поры". Число их невелико, а диаметр составляет около 0,3-0,8 нм. Наиболее быстро диффундируют через мембрану легко растворимые в липидном бислое молекулы, например О, и незаряженные полярные молекулы небольшого диаметра (СО, мочевина).

Перенос полярных молекул (сахаров, аминокислот), осуществляемый с помощью специальных мембранных транспортных белков называется облегченной диффузией. Такие белки обнаружены во всех типах биологических мембран, и каждый конкретный белок предназначен для переноса молекул определенного класса. Транспортные белки являются трансмембранными, их полипептидная цепь пересекает липидный бислой несколько раз, формируя в нем сквозные проходы. Это обеспечивает перенос специфических веществ через мембрану без непосредственного контакта с ней. Существует два основных класса транспортных белков: белки-переносчики (транспортеры) и каналообразующие белки (белки-каналы). Белки-переносчики переносят молекулы через мембрану, предварительно изменяя их конфигурацию. Каналообразующие белки формируют в мембране заполненные водой поры. Когда поры открыты, молекулы специфических веществ (обычно неорганические ионы подходящего размера и заряда) проходят сквозь них. Если молекула транспортируемого вещества не имеет заряда, то направление транспорта определяется градиентом концентрации. Если молекула заряжена, то на ее транспорт, кроме градиента концентрации, влияет и электрический заряд мембраны (мембранный потенциал). Внутренняя сторона плазмалеммы обычно заряжена отрицательно по отношению к наружной. Мембранный потенциал облегчает проникновение в клетку положительно заряженных ионов и препятствует прохождению ионов заряженных отрицательно.

Активный транспорт. Активным транспортом называется перенос веществ против электрохимического градиента. Он всегда осуществляется белками-транспортерами и тесно связан с источником энергии. В белках-переносчиках имеются участки связывания с транспортируемым веществом. Чем больше таких участков связывается с веществом, тем выше скорость транспорта. Селективный перенос одного вещества называется унипортом. Перенос нескольких веществ осуществляют котранспортные системы. Если перенос идет в одном направлении - это симпорт, если в противоположных - антипорт. Так, например, глюкоза из внеклеточной жидкости в клетку переносится унипортно. Перенос же глюкозы и Na 4 из полости кишечника или канальцев почек соответственно в клетки кишечника или кровь осуществляется симпортно, а перенос С1~ и НСО" антипортно. Предполагается, что при переносе возникают обратимые конформационные изменения в транспортере, что и позволяет премещать соединенные с ним вещества.

Примером белка-переносчика, использующего для транспорта веществ энергию выделившуюся при гидролизе АТФ, является Na + + насос, обнаруженный в плазматической мембране всех клеток. Na + -K насос работает по принципу антипорта, перекачивая Na" из клетки и К т внутрь клетки против их электрохимических градиентов. Градиент Na + создает осмотическое давление, поддерживает клеточный объем и обеспечивает транспорт сахаров и аминокислот. На работу этого насоса тратится треть всей энергии необходимой для жизнедеятельности клеток. При изучении механизма действия Na + -K + насоса было установлено, что он является ферментом АТФазой и трансмембранным интегральным белком. В присутствии Na + и АТФ под действием АТФа-зы от АТФ отделяется концевой фосфат и присоединяется к остатку аспарагиновой кислоты на молекуле АТФазы. Молекула АТФазы фосфорилируется, изменяет свою конфигурацию и Na + выводится из клетки. Вслед за выведением Na из клетки всегда происходит транспорт К" в клетку. Для этого от АТФазы в присутствии К отщепляется ранее присоединенный фосфат. Фермент дефосфорилируется, восстанавливает свою конфигурацию и К 1 "закачивается" в клетку.

АТФаза образована двумя субъединицами, большой и малой. Большая субъединица состоит из тысячи аминокислотных остатков, пересекающих бислой несколько раз. Она обладает каталитической активностью и способна обратимо фосфорилироваться и дефосфорилироваться. Большая субъединица на цитоплазматической стороне имеет участки для связывания Na + и АТФ, а на внешней стороне -участки для связывания К + и уабаина. Малая субъединица является гликопротеином и функция его пока не известна.

Na + -K насос обладает электрогенным эффектом. Он удаляет три положительно заряженных иона Na f из клетки и вносит в нее два иона К В результате через мембрану течет ток, образующий электрический потенциал с отрицательным значением во внутренней части клетки по отношению к ее наружной поверхности. Na"-K + насос регулирует клеточный объем, контролирует концентрацию веществ внутри клетки, поддерживает осмотическое давление, участвует в создании мембранного потенциала.

Транспорт в мембранной упаковке. Перенос через мембрану макромолекул (белков, нуклеиновых кислот, полисахаридов, липопротеидов) и других частиц осуществляется посредством последовательного образования и слияния окруженных мембраной пузырьков (везикул). Процесс везикулярного транспорта проходит в две стадии. Вначале мембрана пузырька и плазмалемма слипаются, а затем сливаются. Для протекания 2 стадии необходимо чтобы молекулы воды были вытеснены взаимодействующими липидными бислоями, которые сближаются до расстояния 1-5 нм. Считается, что данный процесс активизируют специальные белки слияния (они выделены пока только у вирусов). Везикулярный транспорт имеет важную особенность - поглощенные или секретируемые макромолекулы, находящиеся в пузырьках, обычно не смешиваются с другими макромолекулами или органеллами клетки. Пузырьки могут сливаться со специфическими мембранами, что и обеспечивает обмен макромолекулами между внеклеточным пространством и содержимым клетки. Аналогично происходит перенос макромолекул из одного компартмента клетки в другой.

Транспорт макромолекул и частиц в клетку называется эндоцитозом. При этом транспортируемые вещества обволакиваются частью плазматической мембраны, образуется пузырек (вакуоль), который перемещается внутрь клетки. В зависимости от размера образующихся пузырьков различают два вида эндоцитоза - пиноцитоз и фагоцитоз.

Пиноцитоз обеспечивает поглощение жидкости и растворенных веществ в виде небольших пузырьков (d=150 нм). Фагоцитоз - это поглощение больших частиц, микроорганизов или обломков органелл, клеток. При этом образуются крупные пузырьки, фагосомы или вакуоли (d-250 нм и более). У простейших фагоцитарная функция - форма питания. У млекопитающих фагоцитарная функция осуществляется макрофагами и нейтрофилами, защищающими организм от инфекции путем поглощения вторгшихся микробов. Макрофаги участвуют также в утилизации старых или поврежденных клеток и их обломков (в организме человека макрофаги ежедневно поглощают более 100 старых эритроцитов). Фагоцитоз начинается только тогда, когда поглощаемая частица свяжется с поверхностью фагоцита и активирует специализированные рецепторные клетки. Связывание частиц со специфическими рецепторами мембраны вызывает образование псевдоподии, которые обволакивают частицу и, сливаясь краями, образуют пузырек -фагосому. Образование фагосомы и собственно фагоцитоз происходит лишь в том случае, если в процессе обволакивания частица постоянно контактирует с рецепторами плазмалеммы, как бы "застегивая молнию".

Значительная часть материала, поглощенного клеткой путем эндоцитоза, заканчивает свой путь в лизосомах. Большие частицы включаются в фагосомы, которые затем сливаются с лизосомами и образуют фаголизосомы. Жидкость и макромолекулы, поглощенные при пиноцитозе, первоначально переносятся в эндосомы, которые также сливаются с лизосомами, образуя эндолизосомы. Присутствующие в лизосомах разнообразные гидролитические ферменты быстро разрушают макромолекулы. Продукты гидролиза (аминокислоты, сахара, нуклеотиды) транспортируются из лизосом в цитозоль, где используются клеткой. Большинство мембранных компонентов эндоцитозных пузырьков из фагосом и эндосом возвращаются с помощью экзоцитоза к плазматической мембране и там повторно утилизируются. Основным биологическим значением эндоцитоза является получение строительных блоков за счет внутриклеточного переваривания макромолекул в лизосомах.

Поглощение веществ в эукариотических клетках начинается в специализированных областях плазматической мембраны, так называемых окаймленных ямках. На электронных микрофотографиях ямки выглядят как впячивания плазматической мембраны, цитоплазматическая сторона которых покрыта волокнистым слоем. Слой как бы окаймляет небольшие ямки плазмалеммы. Ямки занимают около 2% общей поверхности клеточной мебраны эукариотов. В течении минуты ямки растут, все глубже впячиваются, втягиваются в клетку и затем, сужаясь у основания, отщепляются, образуя окаймленные пузырьки. Установлено, что из плазматической мембраны фибробластов в течении одной минуты отщепляется примерно четвертая часть мембраны в виде окаймленных пузырьков. Пузырьки быстро теряют свою кайму и приобретают способность сливаться с лизосомой.

Эндоцитоз может быть неспецифическим (конститутивным) и специфическим (рецепторным). При неспецифическом эндоцитозе клетка захватывает и поглощает совершенно чуждые ей вещества, например, частицы сажи, красители. Вначале происходит осаждение частиц на гликокаликсе плазмалеммы. Особенно хорошо осаждаются (адсорбируются) положительно заряженные группы белков, так как гликокаликс несет отрицательный заряд. Затем изменяется морфология клеточной мембраны. Она может либо погружаться, образуя впячивания (инвагинации), либо, наоборот, формировать выросты, которые как бы складываются, отделяя небольшие объемы жидкой среды. Образование инвагинаций более характерно для клеток кишечного эпителия, амеб, а выростов - для фагоцитов и фибробластов. Заблокировать эти процессы можно ингибиторами дыхания. Образовавшиеся пузырьки - первичные эндосомы, могут сливаться между собой, увеличиваясь в размере. В дальнейшем они соединяются с лизосомами, превращаясь в эндолизосому - пищеварительную вакуоль. Интенсивность жидкофазного неспецифического пиноцитоза довольно высока. Макрофаги образуют до 125, а клетки эпителия тонкого кишечника до тысячи пиносом в минуту. Обилие пиносом приводит к тому, что плазмалемма быстро тратится на образование множества мелких вакуолей. Восстановление мембраны идет довольно быстро при рециклизации в процессе экзоцитоза за счет возвращения вакуолей и их встраивания в плазмалемму. У макрофагов вся плазматическая мембрана замещается за 30 минут, а у фибробластов за 2 часа.

Более эффективным способом поглощения из внеклеточной жидкости специфических макромолекул является специфический эндоцитоз (опосредуемый рецепторами). Макромолекулы при этом связываются с комплементарными рецепторами на поверхности клетки, накапливаются в окаймленной ямке, и затем, образуя эндосому, погружаются в цитозоль. Рецепторный эндоцитоз обеспечивает накопление специфических макромолекул у своего рецептора. Молекулы, которые связываются на поверхности плазмалеммы с рецептором, называются лигандами. При помощи рецепторного эндоцитоза во многих животных клетках идет поглощение холестерина из внеклеточной среды.

Плазмолемма принимает участие в выведении веществ из клетки (экзоцитоз). В этом случае вакуоли подходят к плазмолемме. В местах контактов плазмолемма и мембрана вакуоли сливаются и содержимое вакуоли поступает в окружающую среду. У некоторых простейших места на клеточной мембране для экзоцитоза заранее предопределены. Так, в плазматической мембране некоторых ресничных инфузорий есть определенные участки с правильным расположением крупных глобул интегральных белков. У мукоцист и трихоцист инфузорий полностью готовых к секреции, на верхней части плазмалеммы имеется венчик из глобул интегральных белков. Этими участками мембраны мукоцист и трихоцист соприкасаются с поверхностью клетки. Своеобразный экзоцитоз наблюдается в нейтрофилах. Они способны при определенных условиях выбрасывать в окружающую среду свои лизосомы. При этом в одних случаях образуются небольшие выросты плазмалеммы, содержащие лизосомы, которые затем отрываются и переходят в среду. В других случаях наблюдается инвагинация плазмалеммы вглубь клетки и захват ею лизосом, распложенных далеко от поверхности клетки.

Процессы эндоцитоза и экзоцитоза осуществляется при участии связанной с плазмолеммой системы фибриллярных компонентов цитоплазмы.

Рецепторная функция плазмалеммы. Это одна из главных, универсальных для всех клеток, является рецепторная функция плазмалеммы. Она определяет взаимодействие клеток друг с другом и с внешней средой..

Все многообразие информационных межклеточных взаимодействий схематически можно представить как цепь последовательных реакций сигнал-рецептор-вторичный посредник-ответ (концепция сигнал-ответ). Передачу информации от клетки к клетке осуществляют сигнальные молекулы, которые вырабатываются в одних клетках и специфически влияют на другие, чувствительные к сигналу (клетки-мишени). Сигнальная молекула - первичный посредник связывается с находящимися на клетках-мишенях рецепторами, реагирующими только на определенные сигналы. Сигнальные молекулы - лиганды - подходят к своему рецептору как ключ к замку. Лигандами для мембранных рецепторов (рецепторов плазмалеммы) являются гидрофильные молекулы, пептидные гормоны, нейромедиаторы, цитокины, антитела, а для ядерных рецепторов - жирорастворимые молекулы, стероидные и тиреоидные гормоны, витамин Д В качестве рецепторов на поверхности клетки могут выступать белки мембраны или элементы гликокаликса - полисахариды и гликопротеиды. Считается, что чувствительные к отдельным веществам участки, разбросаны по поверхности клетки или собраны в небольшие зоны. Так, на поверхности прокариотических клеток и клеток животных имеется ограниченное число мест с которыми могут связываться вирусные частицы. Мембранные белки (переносчики и каналы) узнают, взаимодействуют и переносят лишь определенные вещества. Клеточные рецепторы участвуют в передаче сигналов с поверхности клетки внутрь ее. Разнообразие и специфичность наборов рецепторов на поверхности клеток ведет к созданию очень сложной системы маркеров, позволяющих отличать свои клетки от чужих. Сходные клетки взаимодействуют друг с другом, поверхности их могут слипаться (конъюгация у простейших, образование тканей у многоклеточных). Клетки не воспринимающие маркеры, а также отличающиеся набором детерминантных маркеров уничтожаются или отторгаются. При образовании комплекса рецептор-лиганд активируются трансмембранные белки: белок преобразователь, белок усилитель. В результате рецептор изменяет свою конформацию и взаимодействует с находящимся в клетке предшественником вторичного посредника - мессенджером. Мессенджерами могут быть ионизированный кальций, фосфолипаза С, аденилатциклаза, гуанилатциклаза. Под влиянием мессенджера происходит активация ферментов, участвующих в синтезе циклических монофосфатов - АМФ или ГМФ. Последние изменяют активность двух типов ферментов протеинкиназ в цитоплазме клетки, ведущих к фосфорилированию многочисленных внутриклеточных белков.

Наиболее распространено образование цАМФ, под действием которого усиливается секреция ряда гормонов - тироксина, кортизона, прогестерона, увеличивается распад гликогена в печени и мышцах, частота и сила сердечных сокращений, остеодеструкция, обратное всасывание воды в канальцах нефрона.

Активность аденилатциклазной системы очень велика - синтез цАМФ приводит к десяти тысячному усилению сигнала.

Под действием цГМФ увеличивается секреция инсулина поджелудочной железой, гистамина тучными клетками, серотонина тромбоцитами, сокращается гладкомышечная ткань.

Во многих случаях при образовании комплекса рецептор-лиганд происходит изменение мембранного потенциала, что в свою очередь приводит к изменению проницаемости плазмалеммы и метаболических процессов в клетке.

На плазматической мембране находятся специфические рецепторы, реагирующие на физические факторы. Так, у фотосинтезирующих бактерий на поверхности клетки располагаются хлорофиллы, реагирующие на свет. У светочувствительных животных в плазматической мембране находится целая система фогорецепторных белков-родопсинов, с помощью которых световой раздражитель трансформируется в химический сигнал, а затем электрический импульс.

Ядро отвечает за хранение генетического материала, записанного на ДНК, а также управляет всеми процессами клетки. Цитоплазма содержит в себе органоиды, каждый из которых имеет свои функции, такие как, например, синтез органических веществ, пищеварение и т. д. А о последнем компоненте мы поговорим подробнее в этой статье.

в биологии?

Говоря простым языком, это оболочка. Однако она не всегда полностью непроницаемая. Почти всегда допускается транспорт определенных веществ сквозь мембрану.

В цитологии мембраны можно разделить на два основных типа. Первый - это плазматическая мембрана, которая покрывает клетку. Второй - это мембраны органоидов. Существуют органеллы, которые обладают одной или двумя мембранами. К одномембранным относятся эндоплазматический ретикулум, вакуоли, лизосомы. К двумембранным принадлежат пластиды и митохондрии.

Также мембраны могут быть и внутри органоидов. Обычно это производные внутренней мембраны двумембранных органоидов.

Как устроены мембраны двумембранных органоидов?

У пластид и митохондрий две оболочки. Внешняя мембрана обоих органоидов гладкая, а вот внутренняя образует необходимые для функционирования органоида структуры.

Так, оболочка митохондрий обладает выступами вовнутрь - кристами или гребнями. На них и происходит цикл химических реакций, необходимых для клеточного дыхания.

Производными внутренней мембраны хлоропластов являются дискообразные мешочки - тилакоиды. Они собраны в стопки - граны. Объединяются отдельные граны между собой с помощью ламелл - длинных структур, также образованных из мембран.

Строение мембран одномембранных органоидов

У таких органелл мембрана одна. Она обычно представляет собой гладкую оболочку, состоящую из липидов и белков.

Особенности строения плазматической мембраны клетки

Мембрана состоит из таких веществ как липиды и белки. Строение плазматической мембраны предусматривает ее толщину в 7-11 нанометров. Основную массу мембраны составляют липиды.

Строение плазматической мембраны предусматривает наличие в ней двух слоев. Первый — двойной слой фосфолипидов, а второй — слой белков.

Липиды плазматической мембраны

Липиды, которые входят в состав плазматической мембраны, делятся на три группы: стероиды, сфингофосфолипиды и глицерофосфолипиды. Молекула последних имеет в своем составе остаток трехатомного спирта глицерола, в котором атомы гидрогена двух гидроксильных групп замещены цепочками жирных кислот, а атом гидрогена третьей гидроксильной группы — остатком фосфорной кислоты, к которому, в свою очередь, присоединяется остаток одного из азотистых оснований.

Молекулу глицерофосфолипидов можно разделить на две части: головку и хвостики. Головка гидрофильна (т. е. растворяется в воде), а хвостики — гидрофобны (они отталкивают воду, зато растворяются в органических растворителях). Благодаря такому строению молекулу глицерофосфолипидов можно назвать амфифильной, т. е. и гидрофобной, и гидрофильной одновременно.

Сфингофосфолипиды похожи по химическому строению на глицерофосфолипиды. Но они отличаются от упомянутых выше тем, что в своем составе вместо остатка глицерола имеют остаток спирта сфингозина. Их молекулы также обладают головками и хвостиками.

На картинке ниже хорошо видна схема строения плазматической мембраны.

Белки плазматической мембраны

Что касается белков, входящих в строение плазматической мембраны, то это в основном гликопротеины.

В зависимости от расположения в оболочке их можно разделить на две группы: периферические и интегральные. Первые — это те, которые находятся на поверхности мембраны, а вторые — те, которые пронизывают всю толщину оболочки и находятся внутри липидного слоя.

В зависимости от функций, которые выполняют белки, их можно разделить на четыре группы: ферменты, структурные, транспортные и рецепторные.

Все белки, которые находятся в структуре плазматической мембраны, химически не связаны с фосфолипидами. Поэтому они могут свободно перемещаться в основном слое мембраны, собираться в группы и т. д. Вот почему строение плазматической мембраны клетки нельзя назвать статичным. Оно динамично, так как все время изменяется.

Какую роль выполняет клеточная оболочка?

Строение плазматической мембраны позволяет ей справляться с пятью функциями.

Первая и основная — ограничение цитоплазмы. Благодаря этому клетка обладает постоянной формой и размером. Выполнение данной функции обеспечивается за счет того, что плазматическая мембрана крепкая и эластичная.

Вторая роль — обеспечение Благодаря своей эластичности плазматические мембраны могут образовывать выросты и складки в местах их соединения.

Следующая функция клеточной оболочки — транспортная. Она обеспечивается за счет специальных белков. Благодаря им нужные вещества могут быть транспортированы в клетку, а ненужные — утилизироваться из нее.

Кроме того, плазматическая мембрана выполняет ферментативную функцию. Она также осуществляется благодаря белкам.

И последняя функция — сигнальная. Благодаря тому что белки под воздействием определенных условий могут изменять свою пространственную структуру, плазматическая мембрана может посылать клетки сигналы.

Теперь вы знаете все о мембранах: что такое мембрана в биологии, какими они бывают, как устроены плазматическая мембрана и мембраны органоидов, какие функции они выполняют.