Месторождения, отличия и применения алмазов и графита. Алмаз и графит: свойства, значение, происхождение

Не каждый знает, но алмаз и графит - две формы одного и того же вещества. Эти минералы полностью отличаются друг от друга по твердости и по характеристикам преломления и отражения света. Причем отличия весьма существенные. Алмаз - наиболее твердый в мире минерал, по шкале Мооса он представляет собой эталон - 10, тогда как твердость графита по этой шкале - всего 2. Таким образом, алмаз и графит одновременно самые похожие и непохожие вещества в мире.

Кристаллические решетки алмаза и графита

Каждое из них происходит из углерода, который, в свою очередь, является самым распространенным элементом биосферы. Он присутствует как в атмосфере, так и в воде, в биологических объектах. В земле он представлен в составе нефти, газа, торфа и так далее. Встречается и в качестве залежей графита и алмаза.

Больше всего углерода в организмах. Боле того, ни один из них не может без него обойтись. А происхождение этого минерала в остальных частях планеты как раз и объясняется нахождением когда-то там живых организмов.

Много споров сопровождает вопрос, откуда взялся графит и алмазы, ведь недостаточно, чтобы был один углерод, необходимо также, чтобы выполнялись определенные условия, при которых этот химический элемент принимал новую структуру. Считается, что происхождение графита метаморфическое, а алмазов - магматическое. Это означает, что образование алмазов на планете сопровождают сложные физические процессы, скорее всего, в глубинных слоях земли при горении и взрывах в присутствии кислорода. Ученые предполагают, что в этот процесс также замешан метан, но точно никто не знает.

Отличия между графитом и алмазом

Основное отличие - это строение алмаза и графита. Алмаз представляет собой минерал, форму углерода. Характеризуется метастабильностью, что означает, что он способен оставаться в неизменно вид бесконечно долго. Алмаз переходит в графит при некоторых специфических условиях, например, при высокой температуре в вакууме.

Графит также является модификацией углерода. Его структура делает минерал очень слоистым, поэтому самое распространенное его применение - изготовления грифеля для карандаша.

Явление, при котором вещества, образованные одним и тем же химическим элементом, имеют разные физические свойства, называется аллотропией. Существуют и другие подобные вещества, однако эти два минерала имеют наибольшую разницу между собой. Решающую роль в этом играют особенности строения кристаллической структуры каждого из минералов.

Алмаз имеет невероятно прочную связь между атомами, что обусловлено их плотным расположением. Смежные атомы ячейки имеют форму куба, где частицы расположены на углах, гранях и внутри их. Это тетраэдрический тип строения. Такая геометрия атомов обеспечивает максимально плотную их организацию. Поэтому твердость алмаза такая высокая.

Низкий атомный номер углерода, показывающий, что атом имеет небольшую атомную массу, а соответственно и радиус, делает его самым твердым веществом на планете. Вместе с тем это совершенно не означает прочность. Расколоть алмаз довольно легко, достаточно его ударить. Такое строение объясняет высокий коэффициент теплопроводности и светопреломления алмаза.

Структура графита совершенно иная. На атомарном уровне она представляет собой ряд пластов, расположенных в разных плоскостях. Каждый из этих пластов представляет собой шестиугольники, которые примыкают друг к другу подобно сотам. При этом сильной связью обладают только атомы, расположенные в пределах каждого слоя, а между слоями связь хрупкая, они практически независимы друг от друга.

След от карандаша - это как раз и есть отделяемые слои графита. Из-за особенности своего строения графит имеет невзрачный вид, поглощает свет, обладает электропроводностью и металлическим блеском.

Получение алмаза из графита

Долгое время получить алмаз было технологически сложно, но к сегодняшнему дню эта не такая и трудная задача. Основной проблемой является повторение процессов в лаборатории в короткий промежуток времени, которые в природе проходят за миллионы лет. Ученые доказали, что условиями перехода алмаза из графита являлась высокая температура и давление.

Впервые такие условия были получены с помощью взрыва. Взрыв является химическим процессом, который представляет собой горение при высокой температуре и скорости. После этого собрали остатки графита, и оказалось, что внутри его образовались маленькие алмазы. То есть превращение произошло только фрагментарно. Причиной этого является разброс параметров внутри самого взрыва. Там, где условия были достаточными для такого превращения, оно и произошло.

Натуральный необработанный алмаз

Такие параметры сделали взрывы малоперспективными для получения алмаза. Однако опыты не прекратились, на протяжении длительного времени ученые продолжали проводить их, чтобы каким-то образом получить этот минерал. Более-менее стабильный результат получился, когда графит попытались нагреть импульсно до температуры в две тысячи градусов. В этом случае удалось получить алмазы приличных размеров.

Однако такие опыты дали еще один неожиданный результат. После превращения графита в алмаз происходил обратный переход алмаза в графит при уменьшении давления, то есть происходила графитизация. Таким образом, получение стабильного результата только с помощью одного давления достичь не удавалось. Тогда вместе с увеличением давления начали нагревать графит. Спустя некоторое время, удалось вычислить диапазон давлений и температур, при которых кристаллы алмаза можно было бы получать. Однако эти методы все еще не позволяли получить минерал ювелирного качества.

Для того чтобы получить камни, пригодные для создания украшений, начали выращивать алмазы с помощью применения затравки. В качестве ее использовали готовый кристалл алмаза, который нагревали до температуры 1500 градусов, что стимулировало сначала быстрый, а потом медленный рост. Однако применение метода в промышленных масштабах было нерентабельным. Потом начали в качестве подкормки использовать метан, который при таких условия распадался на углерод и водород. Как раз этот углерод и выступал, если можно так сказать, кормом алмаза, позволяющим ему расти намного быстрее.

Таким образом, сегодня этот метод используется для создания искусственных алмазов. И хотя он и является рентабельным, стоимость таких целых искусственных минералов остается высокой, что делает их не сильно популярными по сравнению с заменителями бриллиантов.

Месторождения минералов

Алмазы зарождаются на глубине 100 км и при температуре 1300 градусов. Кимберлитовая магма, которая образует кимберлитовые трубки, вступает в действие в результате взрывов. Именно такие трубки и представляют собой коренные месторождения алмазов. Впервые подобная трубка была открыта в африканской провинции Кимберли, откуда и пошло ее название.

Наиболее известные месторождения находятся в Индии, России и Южной Африке. На коренные месторождения приходится 80 % всех добываемых алмазов.

Чтобы найти алмаз в природе, используют рентген. Большинство из камней, которые находят, непригодны для ювелирного производства, так как обладают значительным количеством дефектов, в том числе трещинами, включениями, посторонними оттенками флуоресценцией и так далее. Поэтому их применение техническое. Такие камни делят на три категории:

  • борт - камни с зональной структурой;
  • баллас - камни, которые обладают круглой или грушевидной формой;
  • карбонадо - черный алмаз.

Алмазы большого размера с выдающимися характеристиками, как правило, получают свое название. Кроме того, высокая стоимость камня делает его желанным для многих, что гарантирует «кровавую историю».

Графит образуется в результате изменения осадочных пород. В Мексике и на Мадагаскаре можно встретить руду с графитом низкого качества. Наиболее известные месторождения - в Краснодаре и на Украине.

Применение

Применение как алмаза, так и графита намного шире, чем кажется. Для алмаза можно выделить несколько сфер использования.

В ювелирной промышленности алмазы используют только в огранке, как известно, они носят название бриллиантов. Всего 20 % всех добытых камней пригодны для украшений, а минералов высокого качества и куда меньше.

Бриллианты - самые дорогие в мире камни. По стоимости только некоторые экземпляры рубинов могут сравниться с ними. На стоимость минералов влияют огранка, цвет, оттенок и чистота. Обычно некоторые из этих характеристик невооруженным глазом являются незаметными, однако выявляются при экспертизе.

Использование бриллиантов в украшениях очень распространено. Часто они выступаю как единственный камень или дополняют высококачественные сапфиры, рубины, изумруды. Наиболее частое применение камней - кольца для помолвки.

В технической сфере обычно берут второсортное сырье, с дефектами или с различными оттенками. Технические алмазы разделяются на несколько подкатегорий.

  • алмазы определенной формы, которая годится для изготовления подшипников, наконечников сверл и так далее;
  • необработанные камни;
  • камушки с дефектами, применяемые только для изготовления алмазной крошки и порошка.

Последние применяются либо в очень маленьких деталях, либо в качестве напыления для изготовления режущего и шлифовального инструмента.

В электронике применяются иглы, которые являют собой необработанные кристаллы, имеющие от природы острую вершину, или осколки с такой же вершиной. Буровые установки в промышленности также содержат алмазы. Прослойки из этого минерала используются в микросхемах, счетчиках и так далее, происходит это благодаря высокому коэффициенту теплопроводности и сопротивлению.

Около 60 % всех технических алмазов используется в инструментах. Остальные 40 % в равных количествах:

  • при бурении скважин;
  • переработке;
  • в мелких деталях ювелирных изделий;
  • в шлифовальных кругах.

В чистом виде графит не используется. Его, как правило, обрабатывают. Графит высочайшего качества применяется в виде стержня для карандаша. Наиболее широкое применение графит находит в литье. Здесь он применяется для обеспечения гладкой поверхности стали. Для этого он используется в необработанном виде.

В электроугольной промышленности используют не только природного происхождения минерал, но и созданный. Последний имеет высокую однородность по качеству и чистоте. Высокая проводимость тока делает его также широко используемым для изготовления электродов в приборах. Кроме того, он применяется в качестве щеток для двигателя. В металлургии графит используют как смазочный материал.

Графитовые стержни за свою способность замедлять нейтроны раньше широко использовались при создании атомных реакторов. В частности, именно боровые стержни с графитовыми наконечниками выступали в качестве стержней управления-защиты на Чернобыльской АЭС. Одна из проблем, которая после привела к аварии, была в том, что для гашения цепной реакции нужно было нейтроны поглощать, за что отвечал бор, а не замедлять. Поэтому в момент, когда стержни опустили в активную зону реактора, его энергия возросла скачком, что привело к перегреву. Но это была всего лишь одна из множества причин.

Таким образом, алмаз и графит - два разных минерала с одинаковым элементом в основе. Их структуры делают свойства разными, что и представляет интерес. Каждый из них по-своему красив и имеет очень широкое применение как в очень сложных конструкциях, так и в предметах повседневности.

Для обычного человека алмаз и графит – это два совершенно не похожих и никак не связанных друг с другом элемента. Алмаз вызывает ассоциации с переливающимися драгоценностями, вспоминается выражение «блестит как алмаз». Графит – нечто серое, то, из чего обычно делают карандашные грифели.

Трудно поверить, что оба минерала – это одно и то же вещество разной формы обработки.

Понятие и основные характеристики минералов

Алмазом называют прозрачный кристалл, не имеющий цвета, обладающий высокими характеристиками преломления света. Выделяют следующие основные свойства минерала:

Природа зарождает как алмазы определенных форм, так и в нескольких кристаллических формах, что обусловлено его внутренним строением. Ярко выраженные кристаллы имеют форму куба или тэтраэдра с плоскими гранями. Иногда грани кажутся рельефными из-за наличия невидимых глазу многочисленных наростов и преобразований.

Хотя многие считают алмаз самым прочным материалом на свете, но науке известно вещество превосходящее алмаз по прочности более чем на 11% — «гипералмаз».

Графит представляет собой кристаллическое вещество серо-черного цвета, обладающее металлическим блеском. По составу графит имеет слоистую структуру, его кристаллы состоят из мелких тонких пластинок. Это очень хрупкий минерал, напоминающий по внешнему виду сталь или чугун. У графита низкая теплоемкость, но высокая температура плавления. Кроме того, этот минерал:


На ощупь графит жирный, а при проведении по бумаге оставляет следы. Это происходит из-за того, что атомы кристаллической решетки слабо связаны.

Отличие графита от алмаза, особенности строения и процесс перехода одного минерала в другой

Алмаз и графит – аллотропные по отношению друг к другу минералы, то есть имеют различные свойства, но являются разными формами углерода. Их основное отличие заключается лишь в химическом строении кристаллической решетки.

Кристаллическая решетка алмаза имеет вид тэтраэдра, в котором каждый атом окружен еще 4 атомами и является вершиной соседнего тэтраэдра, образуя бесконечное множество атомов, имеющих прочные ковалентные связи.

Графит на атомном уровне состоит из пластов шестиугольников с вершинами-атомами. Атомы хорошо связаны между собой только на уровне пластов, но пласты между собой сильной связи не имеют, что делает графит мягким и нестойким к разрушению. Именно эта особенность и позволяет получить из графита алмаз.

Физические и химические свойства алмаза и графита хорошо видны из таблицы.

Характеристика
Строение атомной решетки Кубическая форма Гексагональная
Светопроводимость Хорошо проводит свет Не пропускает свет
Электропроводимость Не обладает Имеет хорошую электропроводимость
Связи атомов Пространственные Плоскостные
Структура Твердость и хрупкость Слоистость
Максимальная температура, при которой минерал остается неизменным 720 по Цельсию 3700 по Цельсию
Цвет Белый, голубой, черный, желтый, бесцветный Черный, серый, стальной
Плотность 3560 кг/м.куб. 2230 кг/м.куб.
Использование Ювелирное дело, промышленность Литейное производство, электроугольная промышленность.
Твердость по шкале Мооса 10 1

Химическая формула алмаза и графита одна и та же – углерод (С), но процесс создания в природе разный. Алмаз возникает при очень высоких давлениях и мгновенном охлаждении, а графит, наоборот, при низком давлении и высокой температуре.

Выделяют следующие методы получения алмазов:

Процесс алмаза в графит аналогичен. Разница лишь в показателях давления и температуры.

Месторождение минералов

Алмазы пролегают на глубинах более 100 км при температуре 1300 ̊С. От взрывной волны вступает в действие кимберлитовая магма, образуя так называемые кимберлитовые трубки, которые и являются коренными месторождениями алмазов.

Кимберлитовая трубка названа в честь африканской провинции Кимберли, где она и была впервые открыта. Породы с алмазными залежами называют кимберлитами.

Самые известные ныне месторождения находятся в Индии, Южной Африке и в России. На коренных месторождениях, состоящих из кимберлитовых и лампроитовых трубок, добывают до 80% всех алмазов.

Найти алмазы в добытой породе помогают рентгеновские лучи. Большинство найденных камней используется в промышленности, так как не обладают достаточными характеристиками для ювелирной области. Промышленные камни разделяют на 3 вида:

  • борт – мелкие камни, имеющие зернистую структуру;
  • баллас – камни круглой или грушевидной формы;
  • карбонадо – камень черного цвета, получивший свое название из-за сходства с углем.

Любопытно, что наиболее крупные и выдающиеся по характеристикам алмазы получают свое уникальное название. Самые известные из них – «Шах», «Звезда Минаса», «Кохинур», «Звезда Юга», «Президент Варгас», «Минас-Жерайс», «Английский алмаз Дрездена» и др.

Графит образуется в результате видоизменения осадочных пород. Мексиканские, ногинские и мадагаскарские графитовые месторождения богаты рудой с графитом низкого качества. Менее распространенные – ботогольский и цейлонский тип, отличаются рудой, богатой высоким содержанием графита. Крупнейшие известные месторождения находятся на Украине и в Краснодарском крае.

Сфера применения

Алмаз и графит используют гораздо шире, чем может показаться на первый взгляд. Алмазы нашли свое применение в следующих сферах:


В процентном соотношении использования алмазов выглядит так:

  1. Инструменты, машинные детали – 60%.
  2. Обрамление шлифовочных кругов -10%.
  3. Переработка проволоки-10%.
  4. Бурение скважин – 10%.
  5. Ювелирные изделия, мелкие детали – 10%.

Что касается графита, то в чистом виде он практически не используется, а подвергаются предварительной обработке, хотя в разных сферах используется графит разного качества. Для канцелярских карандашей используют графит высочайшего качества. Наиболее широкое применение нашло в литейном производстве, обеспечивая гладкую поверхность различных форм стали. Здесь используется практически необработанный графит.

Электроугольная промышленность наряду с природным использует искусственно созданный графит, также получивший широкое применение благодаря особой чистоте и постоянству состава. Электропроводимость сделала графит материалом для электродов электрических приборов. В металлургии используется как смазочный материал.

Алмаз и графит – одинаковые по составу, но по-своему уникальные вещества. Польза графита для различных отраслей промышленности гораздо выше алмаза.

Алмаз же, призванный радовать своей красотой, неоценим для экономики, принося огромные доходы от применения в ювелирной промышленности.

Алмаз известен людям с незапамятных времен. Старинные легенды позволяют предполагать, что первые находки алмазов в Индии относятся к третьему тысячелетию до нашей эры. Не менее чем за пять веков до начала современного летосчисления с алмазом познакомились древние греки, поскольку к этому времени относится греческая бронзовая статуэтка, глазами которой служат два неотшлифованных алмаза. Высказываются предположения, что в Грецию алмазы были завезены из Индии. В Европу заметное количество индийских алмазов начало поступать только в XIII в. Долгое время исключительно высокая твердость камня являлась непреодолимым препятствием для европейских ювелиров, и все попытки обработать этот минерал терпели неудачу. Лишь в середине XV в. голландцу Ван-Беркену удалось огранить алмазы, шлифуя их друг о друга. Долго оставался неизвестным и химический состав таинственного камня, не поддававшегося воздействию самых сильных кислот и щелочей. Некоторые ученые даже думали, что алмаз состоит из особого химического элемента - алмазной земли. В середине XVII в. во Флоренции ставились опыты по нагреванию в закрытых сосудах алмазов и рубинов. При этом было установлено, что рубины не претерпевали никаких изменений, а от алмазов не оставалось "ни малейшего следа". Это казалось совершенно необъяснимым, и лишь много позднее выяснилось, что кристаллы алмаза, нагреваемые в окружении кислорода, попросту сгорают.

Показательное сжигание алмаза в конце XVIII в. было проведено в Петербургском горном училище (ныне Ленинградский горный институт). Этот опыт, по-видимому, имел целью доказать невозможность искусственного получения крупных алмазов путем сплавления мелких кристаллов. К этому же времени относятся многочисленные опыты по сжиганию алмазов, проводившиеся в различных странах Западной Европы.

Большое внимание этим опытам уделял и знаменитый французский химик А. Лавуазье, поскольку "бесследное" исчезновение алмаза при нагревании противоречило закону сохранения материи. Он смог определенно сказать лишь то, что алмаз принадлежит к классу горючих тел и что продуктом сгорания его является газообразное вещество. Отметив возможное родство алмаза с углеродом, ученый все же не решился отождествить сверкающий камень с углем и не сделал окончательного вывода о составе алмаза. Он писал, что, может быть, никогда нельзя будет определить состав этого минерала.

Однако уже на рубеже XVIII и XIX вв. химическая природа алмаза была точно установлена. Английский химик П. Теннан в 1797 г. сжег алмаз в плотно закрытом золотом сосуде, заполненном кислородом, и установил, что образовавшийся при этом газ является двуокисью углерода. Поскольку первоначально в сосуде кроме алмаза и кислорода ничего не было, то, следовательно, алмаз в химическом отношении является чистым углеродом. Чтобы окончательно убедиться в правильности сделанного вывода, П. Теннан определил количество углерода в заполняющем сосуд углекислом газе. Оказалось, что оно в точности соответствует массе сгоревшего алмаза.

Таким образом, алмаз состоит из одного химического элемента - углерода. Аналогичный химический состав (не считая случайных и механических примесей) имеют графит, древесный и каменный уголь, сажа, т. е. весьма распространенные и далеко не самые привлекательные по внешнему виду вещества. А если это так, то в чем же причина совершенно различного облика столь разных физических и химических свойств этих веществ?

Исключительную по своей прозорливости мысль высказал М. В. Ломоносов: причиной необычайной твердости алмаза является "сложение его из частиц, тесно соединенных". Предвидение гениального ученого подтвердилось почти через два столетия, в начале XX в., когда с помощью рентгеновских лучей удалось расшифровать атомную структуру алмаза и графита. Были установлены существенные различия в пространственном расположении слагающих эти вещества элементарных частиц - атомов.

В алмазе атомы углерода размещаются очень плотно, причем каждый из них прочно связан с четырьмя окружающими его атомами (рис. 13).

Совершенно иной вид имеет кристаллическая решетка графита. Структура ее образована параллельными слоями сеток, состоящих из шестиугольников с атомами углерода в вершинах. Слои отстоят на 3,39 Å (Å - сокращенное обозначение единицы длины, равной 10 -8 см, которая называется "ангстрем" ) один от другого и последовательно сдвинуты, так что в проекции совмещается только половина атомов углерода, а остальная часть их проецируется в центре ячеек сетки нижних и верхних слоев (рис. 14). Связь между слоями атомов в графите осуществляется посредством легкоподвижных электронов. Такая связь придает веществу металлические свойства: непрозрачность, блеск, высокую электропроводность. Атомы в каждом отдельно взятом слое связаны достаточно прочно, а связь между слоями слабая. Этим обусловливается весьма высокая способность расщепляться на тонкие пластинки и чрезвычайно малая твердость графита по направлению, параллельному слоистости кристаллической решетки минерала.

Образование одинаковых по химическому составу веществ, различающихся кристаллической структурой решетки, называется полиморфизмом, а сами такие вещества называются полиморфными модификациями. Следовательно, алмаз и графит являются полиморфными модификациями углерода.

Рассмотрим важнейшие свойства алмаза и проследим их связь с внутренним строением минерала.

Хотя алмаз в чистом виде состоит только из атомов углерода, реальные природные кристаллы этого минерала постоянно содержат примеси других веществ. Минимальные количества примесей характерны для бесцветных и слабоокрашенных прозрачных алмазов. При сжигании таких камней количество золы не превышает 0,02-0,05% от их массы. В замутненных и особенно в непрозрачных разновидностях алмаза содержание золы достигает нескольких процентов.

Спектральным анализом в составе золы установлены кремний, магний, кальций, алюминий, железо, титан и некоторые другие химические элементы.

Наряду с мельчайшими включениями в алмазах нередко присутствуют и сравнительно крупные посторонние частицы: чаще всего графит, несколько реже минералы, являющиеся по химическому составу силикатами (оливин, пироксены), алюмосиликатами (гранаты) и сложными окислами (хромшпинелиды). В крупных кристаллах алмаза довольно обычны также включения его мелких кристалликов.

Плотность алмаза около 3,52. Эта величина типична для чистых хорошо образованных кристаллов. У мелкозернистых агрегатов, часто содержащих включения графита и обладающих не вполне массивным сложением, плотность существенно ниже и у отдельных разновидностей карбонадо опускается до 3,0. Для сравнения укажем, что плотность графита не превышает 2,23. Таким образом, "рыхлость" атомной структуры графита привела к более чем полуторакратному снижению плотности.

Цвет и особенности светопреломления алмаза рассмотрены в предыдущей главе, а здесь мы остановимся еще на одном весьма интересном и важном его свойстве, которое также тесно связано с внутренним строением. Речь пойдет о люминесценции. Люминесценцией называется способность некоторых природных и синтетических веществ светиться под действием рентгеновских, ультрафиолетовых и катодных лучей, что принято обозначать специальными терминами: рентгенолюминесценция, фотолюминесценция, катодолюминесценция.

Большинство алмазов обладает всеми тремя видами люминесценции. Некоторые кристаллы при этом светятся голубым, другие зеленым, желтым или розовым светом. Темноокрашенные (бурые, черные и т. п.) и ожелезненные кристаллы, а также некоторые прозрачные их разновидности не люминесцируют.

Наиболее изучены рентгено- и фотолюминесценция алмаза, которые используются при проведении геологопоисковых работ, о чем подробнее рассказывается в заключительных главах. Некоторые исследователи связывают люминесценцию с присутствием посторонних примесей, другие указывают на причинную связь этого явления со специфическими особенностями кристаллической решетки минерала.

Чистые кристаллы прозрачны не только для световых, но и для рентгеновских лучей, что позволяет легко определять алмазы среди сходных по внешнему облику минералов, а также отличать бриллианты от всевозможных подделок. А вот ультрафиолетовые лучи многие алмазы совершенно не пропускают.

Твердость является, как уже отмечалось, весьма важным свойством алмаза, определяющим его исключительно большую роль в производственной деятельности человека. Под твердостью обычно подразумевается сопротивление одного тела проникновению в него другого. Для качественного определения относительной твердости минералов широко используется так называемая шкала твердости (шкала Мооса), предложенная в начале XIX в. Шкала включает десять минералов-эталонов, расположенных в порядке возрастания твердости. При этом порядковые номера эталонов принимаются в качестве баллов твердости.

Минералогическая шкала твердости

Твердость веществ на основе шкалы Мооса определяют, с усилием проводя ребром или острым сколом изучаемого объекта по гладкой поверхности какого-либо эталонного минерала. Если вещество тверже взятого эталона, то на поверхности последнего остаются бороздки, царапины. При меньшей твердости изучаемого вещества относительно минерала-эталона оно не оставляет царапин на его поверхности. При равной твердости объекта и эталона неглубокие царапинки остаются на каждом из них. Алмаз, обладающий наивысшей твердостью, оставляет глубокие борозды на всех минералах и при этом сам не претерпевает ни малейших изменений.

Существуют и более точные, но вместе с тем и значительно более сложные способы определения твердости. Не останавливаясь на их описании, упомянем о двух наиболее широко применяемых. Один из них основан на учете скорости сошлифовки (обдирки) испытываемого вещества при стандартных условиях. Другой способ заключается в измерениях, выполняемых с помощью специального прибора - твердометра. Рабочим органом его служит четырехгранная (а для замеров на особо твердых телах трехгранная) алмазная пирамидка. Острие пирамидки под определенной нагрузкой вдавливают в полированную поверхность изучаемого объекта и по величине получающегося углубления вычисляют показатель твердости (микротвердость) вещества в килограмм-силах на квадратный миллиметр. Величина этого показателя составляет для талька 2,4, кальцита 109, апатита 536, кварца 1120, корунда 2060, алмаза 10060.

Твердость алмазов, как и других минералов, не остается постоянной на различных гранях одного и того же кристалла. Ювелиры давно заметили, что при шлифовке кристаллов алмаза наименьшее сопротивление оказывают грани куба, несколько большее - ромбододекаэдрические грани и наибольшее - грани октаэдра. Детальными исследованиями в наше время установлены ощутимые колебания твердости даже по различным направлениям в пределах единой грани кристалла.

Доказано, что твердость различных граней алмазных кристаллов находится в прямой зависимости от плотности расположения атомов углерода на плоскостях, соответствующих той или иной грани. Такие плоскости, включая не только поверхности граней, но и бесчисленное множество параллельных им плоскостей внутри кристалла, называются плоскими сетками. Количество атомов, приходящееся на единицу поверхности плоской сетки, принимается за ее плотность. Плотность октаэдрических, ромбододекаэдрических и кубических сеток в алмазе выражается отношением 2,308:1,414:1. В этой же последовательности, как уже отмечалось, убывает и твердость граней кристаллов.

Аналогичной закономерности подчиняется распределение твердости и по различным направлениям в пределах каждой отдельно взятой грани: относительно пониженной твердостью обладают те направления, которые характеризуются наибольшими расстояниями между атомами (рис. 15).

Широко известны существенные различия в средней твердости алмазов из разных месторождений. Основными причинами этого являются, по всей вероятности, наличие или отсутствие некоторых примесей в алмазах и изменчивость степени совершенства кристаллической решетки, которая в зависимости от физических и химических условий кристаллизации алмаза может иметь большее или меньшее число всевозможных дефектов.

Следует подчеркнуть, что даже самые "мягкие" алмазы во много раз превосходят по твердости корунд и все остальные минералы.

Наряду с исключительно высокой твердостью алмаз обладает свойством раскалываться под воздействием достаточно сильных и резких механических воздействий, ударов. При этом независимо от внешней формы алмазов они, как правило, раскалываются по плоскостям, параллельным граням октаэдра. Способность кристаллов колоться по определенным поверхностям, параллельным их граням, в минералогии называется спайностью. Поскольку октаэдр имеет восемь попарно параллельных граней, то, следовательно, спайность алмаза параллельна четырем плоскостям.

Спайность по плоскостям октаэдра у кристаллов алмаза обусловлена неравномерным расположением парных плоских атомных сеток, ориентированных параллельно граням октаэдра. Расстояние между двумя парами этих сеток почти втрое больше расстояния между сетками, образующими каждую пару. Спайность алмаза при его обработке позволяет вместо сошлифовки откалывать кусочки кристалла, обладающие дефектами или мешающие приданию необходимой формы бриллиантам и всевозможным техническим изделиям из алмаза (фильерам, резцам и др.).

Алмаз является хорошим проводником тепла. При трении он электризуется. Выше уже упоминалось, что некоторые алмазы обладают полупроводниковыми свойствами и относятся к полупроводникам р-типа. Энергия активации акцепторов у них составляет 0,35-0,40 эв, а удельное сопротивление в интервале температур от -100 до 600° С изменяется в пределах 250-750 ом*см.

Предполагается, что полупроводниковые свойства алмазов обусловлены наличием в них примеси бора.

Весьма важным и интересным свойством алмазов является также возникновение световых вспышек и импульса электрического тока при попадании в кристалл быстрых заряженных частиц. Световые вспышки (сцинтилляции) в алмазах настолько интенсивны, что любой источник ядерного излучения с энергией выше лишь нескольких тысяч электрон-вольт надежно регистрируется при использовании обычных фотоэлектронных умножителей.

Интенсивность сцинтилляции мало зависит от энергии электронов. Она почти постоянна при температуре ниже -50° С, но с повышением температуры убывает и исчезает полностью при 100° С. Какой-либо связи между сцинтилляционной способностью и другими свойствами алмаза пока не установлено. Исследования в интервале -125÷+ 230°С показали, что счетная способность и фотопроводимость алмаза увеличиваются с понижением температуры. Достоинствами алмазных счетчиков являются прочность, стабильность, долговечность даже в весьма агрессивных средах, а также в окружении сильных магнитных и гравитационных полей.

Алмаз не поддается воздействию самых сильных кислот (соляной, серной, азотной, плавиковой), даже доведенных до кипения. Не реагирует он и со щелочами. И лишь в расплавах едких щелочей, селитры или соды алмаз окисляется и сгорает.

Опыты по нагреванию алмаза, начатые в середине XVII в. во Флоренции, были продолжены в наше время. Установлено, что при нагреве на воздухе до 850-1000° С алмаз сгорает. В струе чистого кислорода он загорается при 720-800° С. Начав гореть при слабом красном калении, камень быстро раскаляется добела и горит голубым пламенем.

Нагревание при нормальном атмосферном давлении без доступа кислорода до температуры выше 1200-1500° С приводит к превращению алмаза в графит. Процесс этот довольно медленный, причем скорость превращения возрастает при повышении температуры. Графитизация начинается на вершинках и ребрах, распространяется на всю поверхность кристалла, а затем и на внутренние части его. В итоге вместо сверкающего кристалла алмаза получаем тусклый черный агрегат графита, имеющий форму исходного камня, но несколько большего объема (из-за различий в плотности алмаза и графита). Обратного перехода графита в алмаз в условиях атмосферного давления осуществить не удается ни путем нагрева или охлаждения, ни какими-либо другими способами.

Таким образом, при атмосферном давлении устойчивой модификацией углерода является графит, а алмаз в этих условиях представляет собой неустойчивую (метастабильную) модификацию данного вещества. Если так, то возникают два вполне естественных вопроса. Во-первых, почему алмаз переходит в графит только при сильном нагреве, а при обычной температуре не изменяется на протяжении тысяч и, как увидим в последующих главах, даже сотен миллионов лет? Во-вторых, при каких же условиях происходит кристаллизация углерода в форме алмаза?

Ответ на первый из поставленных вопросов дают результаты исследований физико-химических процессов образования горных

Штриховые участки границ экспериментального подтверждения не имеют.

пород и минералов. Установлено, что реакции полиморфного превращения (в отличие, например, от плавления) протекают с большим трудом и незначительной скоростью. Для начала перехода одной модификации в другую, более устойчивую, необходимо, чтобы составляющие кристалл частицы (атомы, ионы) обладали определенным количеством энергии, достаточным для преодоления "энергетического барьера" при перестройке кристаллической структуры. Чем ниже температура, тем меньше вероятность преодоления такого "барьера" и скорость превращения.

При низких температурах скорость превращения может стать равной нулю и тогда метастабильная модификация будет сохраняться неопределенно долго.

Малая скорость превращения характерна для случаев, когда полиморфные модификации сильно различаются по своему кристаллическому строению. Именно благодаря очень сильным различиям в структуре кристаллических решеток не происходит самопроизвольного превращения алмаза в графит при обычных температурах на земной поверхности.

Ответ на второй вопрос - об условии кристаллизации углерода в виде алмаза - был получен в итоге теоретических исследований, результаты которых полностью подтвердились экспериментальными проверками.

Советский ученый О. И. Лейпунский на базе теоретических предпосылок рассчитал, что для превращения графита в алмаз в твердой фазе необходимы давление около 60000 кгс/см 2 и температура 1700-1800° С. Он указывал также на возможное образование алмаза и при несколько меньших давлениях, если использовать вещества, характеризующиеся относительно невысокой температурой плавления и достаточной растворимостью углерода. В качестве одного из таких веществ называлось железо.

Таблица 2. Сопоставление некоторых свойств алмаза и графита

Свойства Алмаз Графит
Структура Атомы углерода размещаются плотно и каждый из них прочно связан с четырьмя окружающими атомами Слоистая, образованная параллельными слоями шестиугольной сетки; связь между слоями слабая
Твердость по шкале Мооса 10 (наивысшая) 1 (минимальная)
Плотность 3,47-3,56 2,21-2,23
Ударная вязкость Хрупкий Вязкий
Спайность Средняя по четырем направлениям (плоскостям) Весьма совершенная по одной плоскости
Окраска Бесцветная, желтая, бурая, серая, реже черная, синяя и красная Серо-стальная и черная
Блеск Сильный (алмазный) Металлический
Электропроводность Слабая (полупроводник р-типа, при трении электризуется) Хорошая
Химическая стойкость Не поддается воздействию кислот при комнатной температуре и кипячении. Сгорает в расплавах щелочей. На воздухе сгорает при 850-1000° С, в струе кислорода - при 720-800° С. Без доступа воздуха при нагревании выше 1200° С переходит в графит С кислотами не реагирует. Сгорает в расплавах щелочей. Плавится при 3850 ±50° С

В конце 50-х-начале 60-х годов XX в. термодинамические расчеты стабильности алмаза и графита при различных давлениях и температурах проводились многими исследователями.

Расчеты выполнялись с различными степенями приближения, но все они свидетельствуют о том, что образование алмаза возможно только при высоких давлениях, измеряемых десятками тысяч килограммов на квадратный сантиметр (рис. 16). Теоретические выводы о необходимости для образования алмаза высоких давлений полностью подтверждены экспериментально (рис. 17) и нашли широкое практическое применение. Заводы по изготовлению искусственных алмазов работают сейчас во многих странах мира, и общая продукция их исчисляется десятками миллионов карат. Подробнее эти вопросы рассматриваются в следующей главе.

Главнейшие различия между рассмотренными полиморфными модификациями углерода суммированы в табл. 2.

Недавно появились сообщения о том, что в Институте элементоорганических соединений Академии наук СССР получена новая, третья форма кристаллического углерода - карбин. В качестве исходного вещества при синтезе использовался ацетилен. Карбин, как и некоторые разновидности алмаза, обладает свойствами полупроводника и фотопроводимостью. Отмечалось присутствие близких к карбину форм кристаллического углерода в отдельных метеоритах.

Высокая химическая устойчивость и жаропрочность, сравнительно малая плотность, абсолютная немагнитность и многие другие свойства кристаллического углерода стимулируют поиски новых углеродных материалов. Весьма перспективным направлением таких исследований является синтез гибридных веществ, сочетающих отдельные свойства алмаза, графита и карбина. Первые шаги в этом направлении уже сделаны. Из каменного угля получено углеродное стекло, сочетающее жаропрочность и химическую устойчивость графита со свойствами полупроводника и обладающее еще меньшей плотностью. Поиски продолжаются.


Графит, брат угля и алмаза

На картинках, иллюстрирующих нахождение углерода в минеральной природе, графит ненапрасно располагают между углем и алмазом. По свойствам графит действительно частично схож с обычным каменным углем, а частично – с благородным алмазом.

Самородный графит не всегда одинаков. Добытый из недр, он чаще всего черен, плотен, мягок и прекрасно пишет по твердой поверхности. За это греки и прозвали черный минерал «графитом»: «графо» - значит «пишу».

Народы, менее склонные к писательству, звали графит (в вольном переводе на русский) и «черным свинцом», и «углистым железом», а также «сливовиком» и даже «скальником» - поскольку графитовые обнажения чаще всего таятся в расселинах скал.

Природный графит может быть не только черным, но и серым, с явным металлическим отблеском. Графитовая масса нередко полна примесей – в том числе и золота – и промышленникам приходится использовать многоэтапные технологии очищения графита.

Между тем, каждому металлургу известно, как много графита выделяет остывающий чугун. Так не проще ли вместо добычи ископаемого графита использовать графит искусственный?

Разновидности графита

Графит имеет слоистое строение. Атомы углерода в графите объединены в пластины толщиной в одну молекулу. В идеале пластины плотно прилегают друг к другу и срастаются в шестиугольные таблитчатые кристаллы. Кристаллические разрастания графита могут принимать столбчатую, чешуйчатую или сфероподобную форму. Графитовые сферолиты порой образуют массивные грозди, округлости которых напоминают бока темных слив, покрытых глянцевым налетом.

Природный графит может быть смешан с аморфной углистой или глинистой массой, газами, битумами и соединениями чужеродных элементов, но в нем всегда наблюдается кристаллическая структура, и он достаточно легко очищается и доводится до нужных производству параметров.

Доменный графит, выделяясь в среду отдельными мельчайшими пластинками, представляет собой трудноуловимое вещество. Его улавливают и утилизуют – обычно прямо на предприятии, используя как добавку к шихте – но технология дорога и масштабы этой утилизации невелики.

Более производительным является метод изготовления графита из высокоуглеродистого сырья – летучих углеводородов, антрацита, кокса, пека. Основой метода является нагревание твердой сырьевой массы до 2800°С, а газообразной среды – до 3000°С при повышенном до 500 атм. давлении.

Технологии добычи природного и получения искусственного графита весьма затратны. Однако целесообразность подобных расходов неоспорима: свойства графита уникальны, и как материал он во многих случаях просто незаменим.

Свойства графита

Главное практическое свойство графита – устойчивость к запредельным термическим нагрузкам , инертность в диапазоне температур ниже 2500°С, высокая электропроводность, низкий коэффициент трения в парах графит-металл. Помимо того, графит легко расщепляется на чешуйки, которые, в свою очередь, без задержки прилипают к любой поверхности. Таким образом, мелкодисперсная графитная пыль становится отличным смазывающим веществом.

Температура плавления графита близка к 4000°С, что позволяет использовать материал в качестве лабораторной среды для работы с тугоплавкими металлами. Находит свое применение и высокая теплопроводность минерала.

Пластичность графита дает возможность формовать из него детали любой формы. Прессованный графит прекрасно поддается механической обработке.

Важнейшим свойством графита является его способность к перерождению в алмаз.

Алмаз из графита и графит из алмаза

Разница между графитом и алмазом состоит в плотности укладки углеродных слоев. Практически разобщенные в графите, в алмазе они соединены столь плотно, что кристаллическая решетка минерала принимает кубическую форму. То есть каждый атом углерода в алмазе находится одновременно в трех взаимно перпендикулярных слоях.

Для того чтобы углеродные слои связались воедино, не придумано ничего лучше кроме сильного сдавливания и подъема температуры. Первые синтетические алмазы были получены при разогреве графита до 1800°С под давлением в 120 тысяч атмосфер. Сегодня практикуется производство мелкой алмазной крошки при температурах порядка 1200°С и краткосрочном повышении давления до 300 тыс. атм.

Реакция обратима. Любой алмаз, разогретый до 1000°С, начинает превращаться в графит. При 2000°С процесс протекает очень быстро.

Использование графита

И природный, и синтетический графит находят применение в промышленности. В металлургии цветных и тугоплавких металлов графит незаменим как материал для обработки или изготовления литьевых форм. Способность графита растворяться в разогретых сплавах используется для придания изделиям заданных свойств.

Работоспособность подшипников скольжения обеспечивается за счет использования графита. Что важно, темп износа графитовой опоры или обоймы постоянен во всем диапазоне рабочих температур подшипников, нередко насчитывающем сотни градусов.

Графит обладает не только смазывающими, но и абразивными способностями. Тончайшие полировочные пасты содержат в себе графит. Введенный в состав фрикционных материалов, минерал повышает устойчивость изделий к нагреву.

Керамика, замешанная на графите, отличается особой огнеупорностью. Электропроводность и стойкость материала к эрозии дает возможность изготавливать из графита высоковольтные контакты, облицовку сопел и дюз.

Инертность графита делает его отличным защитным покрытием для всевозможных конструкций. Краски, созданные на основе графитовой взвеси в растворителе-пластификаторе, работают и на твердых (бетон, сталь), и на упругих (древесина, алюминий) поверхностях.

Введение

1.1.Общая характеристика алмаза

1.2. Общая характеристика графита

2. Промышленные типы месторождений гранита и алмаза

3. Природные и технологические типы алмазосодержащих и графитовых руд

4. Разработка месторождений гранита и алмаза

5. Области применения гранита и алмаза

Заключение

Список используемой литературы.


Введение

Алмазная промышленность нашей страны находится в стадии развития, внедрения новых технологий обработки минералов.

Найденные месторождения алмазов вскрываются лишь процессами эрозии. Для разведчика это означает, что существует множество «слепых» месторождений, не выходящих на поверхность. Об их присутствии можно узнать по обнаруженным локальным магнитным аномалиям, верхняя кромка которых располагается на глубине в сотни, а если повезет – то в десятки метров. (А. Портнов).

Исходя из вышесказанного, я могу судить о перспективности развития алмазной промышленности. Именно поэтому я выбрала тему – «Алмаз и графит: свойства, происхождение и значение».

В своей работе я попыталась проанализировать связь между графитом и алмазом. Для этого сравнила эти вещества с нескольких точек зрения. Я рассмотрела общую характеристику данных минералов, промышленные типы их месторождений, природные и технические типы, разработку месторождений, области применения, значение данных минералов.

Несмотря на то, что графит и алмаз полярные по своим свойствам, они являются полиморфными модификациями одного и того же химического элемента - углерода. Полиморфные модификации, или полиморфы - это вещества, которые имеют одинаковый химический состав, но различную кристаллическую структуру. С началом синтеза искусственных алмазов резко возрос интерес к исследованию и поискам полиморфных модификаций углерода. В настоящее время, кроме алмаза и графита, достоверно установленными можно считать лонсдейлит и чаотит. Первый во всех случаях был найден только в тесном взаимопрорастании с алмазом и поэтому называется еще гексагональным алмазом, а второй встречается в виде пластинок, чередующихся с графитом, но расположенных перпендикулярно его плоскости.


1. Полиморфные модификации углерода: алмаз и графит

Единственный минералообразующий элемент алмаза и графита - это углерод. Углерод (С) - химический элемент IV группы периодической системы химических элементов Д.И.Менделеева, атомный номер - 6, относительная атомная масса - 12,011(1). Углерод устойчив в кислотах и щелочах, окисляется только дихроматом калия или натрия, хлористым железом или алюминием. Углерод имеет два стабильных изотопа С(99,89%) и С(0,11%). Данные изотопного состава углерода показывают, что он бывает разного происхождения: биогенного, небиогенного и метеоритного. Многообразие соединений углерода, объясняющееся способностью его атомов соединяться друг с другом и атомами других элементов различными способами, обусловливает особое положение углерода среди других элементов.

1.1 Общая характеристика алмаза

При слове «алмаз» сразу же вспоминаются тайные истории, повествующие о поисках сокровищ. Когда-то люди, охотившиеся за алмазами, и не подозревали, что предметом их страсти является кристаллический углерод, который образует сажу, копоть и уголь. Впервые это доказал Лавуазье. Он поставил опыт по сжиганию алмаза, используя собранную специально для этой цели зажигательную машину. Оказалось, алмаз сгорает на воздухе при температуре около 850-1000*С, не оставляя твердого остатка, как и обычный уголь, а в струе чистого кислорода сгорает при температуре 720-800*С. При нагревании до 2000-3000*С без доступа кислорода он переходит в графит (это объясняется тем, что гомеополярные связи между атомами углерода в алмазе очень прочны, что обусловливает очень высокую температуру плавления.

Алмаз - бесцветное, прозрачное кристаллическое вещество, чрезвычайно сильно преломляющее лучи света.

Атомы углерода в алмазе находятся в состоянии sp3-гибридизации. В возбужденном состоянии происходит распаривание валентных электронов в атомах углерода и образование четырёх неспаренных электронов.

Каждый атом углерода в алмазе окружен четырьмя другими, расположенными от него в направлении от центра в вершинах тетраэдра.

Расстояние между атомами в тетраэдрах равно 0,154 нм.

Прочность всех связей одинакова.

Весь кристалл представляет собой единый трехмерный каркас.

При 20*С плотность алмаза составляет 3,1515 гр/см. Этим объясняется его исключительная твердость, которая по граням различна и уменьшается в последовательности: октаэдр - ромбододекаэдр - куб. В то же время алмаз обладает совершенной спайностью (по октаэдру), а предел прочности на изгиб и сжатие у него ниже, чем у других материалов, поэтому алмаз хрупок, при резком ударе раскалывается и при дроблении сравнительно легко превращается в порошок. Алмаз обладает максимальной жесткостью. Сочетание этих двух свойств позволяет использовать его для абразивных и других инструментов, работающих при значительном удельном давлении.

Показатель преломления (2,42) и дисперсия (0,063) алмаза намного превышают аналогичные свойства других прозрачных минералов, что в сочетании с максимальной твердостью обусловливает его качество как драгоценного камня.

В алмазах обнаружены примеси азота, кислорода, натрия, магния, алюминия, кремния, железа, меди и других, обычно в тысячных долях процента.

Алмаз чрезвычайно стоек к кислотам и щелочам, не смачивается водой, но обладает способностью прилипать к некоторым жировым смесям.

Алмазы в природе встречаются как в виде хорошо выраженных отдельных кристаллов, так и поликристаллических агрегатов. Правильно образованные кристаллы имеют вид многогранников с плоскими гранями: октаэдр, ромбододекаэдр, куб и комбинации этих форм. Очень часто на гранях алмазов имеются многочисленные ступени роста и растворения; если они неразличимы глазом, грани кажутся искривленными, сферическими, в форме октаэдроида, гексаэдроида, кубоида и их комбинаций. Различная форма кристаллов обусловлена их внутренним строением, наличием и характером распределения дефектов, а также физико-химическим взаимодействием с окружающей кристалл средой.

Среди поликристаллических образований выделяются - баллас, карбонадо и борт.

Баллас - это сферолитовые образования с радиально-лучистым строением. Карбонадо - скрытокристаллические агрегаты с размером отдельных кристаллов 0,5-50 мкм. Борт - яснозернистые агрегаты. Балласы и особенно карбонадо имеют самую высокую твердость из всех видов алмазов.

Рис.1 Строение кристаллической решетки алмаза.


Рис.2 Строение кристаллической решетки алмаза.

1.2 Общая характеристика графита

Графит - серо-черное кристаллическое вещество с металлическим блеском, жирное на ощупь, по твердости уступает даже бумаге.

Структура графита слоистая, внутри слоя атомы связаны смешанными ионно-ковалентными связями, а между слоями - существенно металлическими связями.

Атомы углерода в кристаллах графита находятся в sp2-гибридизации. Углы между направлениями связей равны 120*. В результате образуется сетка, состоящая из правильных шестиугольников.

При нагревании без доступа воздуха графит не претерпевает никакого изменения до 3700 *С. При указанной температуре он выгоняется, не плавясь.

Кристаллы графита - это, как правило, тонкие пластинки.

В связи с низкой твердостью и весьма совершенной спайностью графит легко оставляет след на бумаге, жирный на ощупь. Эти свойства графита обусловлены слабыми связями между атомными слоями. Прочностные характеристики этих связей характеризуют низкая удельная теплоемкость графита и его высокая температура плавления. Благодаря этому, графит обладает чрезвычайно высокой огнеупорностью. Кроме того, он хорошо проводит электричество и тепло, устойчив при воздействии многих кислот и других химических реагентов, легко смешивается с другими веществами, отличается малым коэффициентом трения, высокой смазывающей и кроющей способностью. Все это привело к уникальному сочетанию в одном минерале важных свойств. Поэтому графит широко используется в промышленности.

Содержание углерода в минеральном агрегате и структура графита являются главными признаками, определяющими качество. Графитом часто называют материал, который, как правило, не является не только монокристаллическим, но и мономинеральным. В основном имеют в виду агрегатные формы графитового вещества, графитовые и графитсодержащие породы и продукты обогащения. В них, кроме графита, всегда присутствуют примеси (силикаты, кварц, пирит и др.). Свойства таких графитовых материалов зависят не только от содержания графитового углерода, но и от величины, формы и взаимных отношений кристаллов графита т.е. от текстурно-структурных признаков используемого материала. Поэтому для оценки свойств графитовых материалов необходимо учитывать как особенности кристаллической структуры графита, так и текстурно-структурные особенности других их составляющих.

Рис.3. Строение кристаллической решетки графита.


Рис.4. Вкрапленники графита в кальците.


2. Промышленные типы месторождений алмаза и графита

Месторождения алмазов подразделяются на россыпные и коренные, среди которых выделяются типы и подтипы, различающиеся по условиям залегания, формам рудных тел, концентрациям, качеству и запасам алмазов, условиям добычи и обогащения.

Коренные месторождения алмазов кимберлитового типа во всем мире являются основными объектами эксплуатации. Из них добывается около 80% природных алмазов. По запасам алмазов и размерам они разделяются на уникальные, крупные, средние и мелкие. С наибольшей рентабельностью отрабатываются верхние горизонты выходящих на дневную поверхность уникальных и крупных месторождений. В них сосредоточены основные запасы и прогнозные ресурсы алмазов отдельных алмазоносных кимберлитовых полей. Кимберлиты – это «вулканические жерла», заполненные брекчией. Брекчия состоит из обломков и ксенолитов, окружающих и осевших сверху пород, из обломков пород, вынесенных с глубин 45-90 км и более. Цементом является вулканический материал, туфы щелочно-ультроосновного состава, так называемые кимберлиты и лампроиты. Кимберлитовые трубки располагаются на платформах, лампроитовые – в их складчатом обрамлении. Время образования трубок разное – от архея до кайнозоя, а возраст алмазов, даже самых молодых из них, составляет около 2-3 млрд. лет. Образование трубок связано с прорывом вверх по узким каналам под большим давлением, на глубине свыше 80 км, при температуре около 1000*щелочно-ультроосновных расплавов. Большинство хорошо изученных кимберлитовых тел имеет сложное строение; в наиболее упрощенном случае в строении трубки участвуют две основные разновидности пород, образовавшихся в ходе двух последовательных фаз внедрения: брекчия (1-й этап) и массивный «крупнопорфировый» кимберлит (2-й этап). В строении некоторых кимберлитовых трубок выявлены также кимберлитовые дайки и жилы, связанные с трубками. Обнаружены слепые тела, образованные порциями кимберлитовой магмы, не доходившими до дневной поверхности. Месторождения, связанные с дайками и жилами кимберлитов, как правило, относятся к категории мелких, реже средних по запасам алмазов Во многих случаях прорыв вверх достигал палео-поверхности, но многие трубки взрыва могут быть «слепыми» и до сих пор не вскрыты эрозией, т.е. залегают где-то на глубине. Но и на поверхности Земли есть места, где возникают давления вполне достаточные для образования алмаза. Это места удара метеоритов, где алмаз встречается не только в Земле, но и в ряде самих метеоритов.